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Abstract—Object tracking in the Internet of Things (IoT)
has become a hot topic over the past ten years. Currently, the
integration of video and radio-frequency identification (RFID)
technology plays a crucial role in item-level activity recognition.
Various techniques and applications have been proposed for
visual object tracking. However, identifying semantic features of
item-level objects in huge size of video content is a non-trivial
task, especially in supply chain management. To alleviate this
problem, this paper presents a novel method that applies
IoT information to facilitate video summarization. Differing
from common video summarization techniques, we use IoT
information to select keyframes of the video content during
the background model establishment. Then we match other
keyframes with the background to extract important features.
Finally, a compact summarization image for queried objects
is generated according to a clustering analysis. We have also
performed experiments to confirm the effectiveness of the
proposed work.
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I. INTRODUCTION

Object tracking is an important precondition to supply
chain management of smart cities. To improve the mon-
itoring of moving objects, video surveillance systems and
techniques are widely adopted in supply chain management.
Video techniques are able to provide visual information of
objects including appearance and motion. However, current
video analysis methods are difficult to monitor behaviors and
the identification of single objects without other integrated
information [1], [2]. These studies point out that the poor
applicability of current video tracking techniques is due to
several critical factors: limited detection accuracy, insufficient
object identification and lack of processing capacity. For
example, video tracking may produce inaccurate results when
objects are small in size or have the same appearance in supply
chains. Hence, there is a need for supply chain management
to physically identify objects.

The Internet of things (IoT) greatly bridges the gap be-
tween the real objects and data representations. IoT is a
global infrastructure where services, devices and objects are
highly interconnected. In IoT, physical objects are attached
with radio-frequency identification (RFID) tags, including two
main types: passive (no power source) and active RFID (self-
powered). In general, passive RFID tags are inexpensive, while
active RFID tags have longer operating range. Both passive
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and active RFID tags uniquely identify every single object
with a tag serial number. Based on RFID tags, readers and
other sensors, tracking single objects with time, location and
other information, such as temperature and force, is achieved
in IoT. With item-level traceability provided by RFID, IoT
significantly minimizes the possibility of product shrinkage
in supply chain management, including misplaced items and
damaged products [3]. Furthermore, a significant number of
researchers integrate RFID technology into video surveillance
systems to improve the accuracy of object identification and
positioning [4]-[8]. They suggest that the combination of RFID
and video technologies is the key to successful analysis of
moving objects. However, it is time-consuming to browse huge
size of video data during the retrieval process. Although previ-
ous work uses diverse approaches [9], [10] to summarize video
content, few studies focus on simplification of visual object
tracking in IoT. It is worth noting that video summarization
techniques are essential to information retrieval of IoT-based
video surveillance systems.

To address the above problem, this paper proposes a novel
approach for summarizing video of object tracking in IoT.
By using IoT information, we select several keyframes of the
video content to build a background model. This background
model is used to match other keyframes and extract important
features. Then connected components in extracted keyframes
are clustered by the K -means algorithm. Based on the result
of clustering analysis, we generate a compact summarization
image which contains important features of queried objects
without redundancy. Users are allowed to quickly scan the
video content by jumping to a keyframe in summarization
images, as well as jumping to an exact RFID serial number.
Experimental results show that the proposed work creates
lower noise of background models than that of the common
Gaussian mixture model (GMM). More importantly, the gen-
erated summarization image is effective for simplifying visual
object tracking in IoT. To summarize, the main contributions
of this paper are:

e Providing a video summarization technique for IoT-
based video surveillance systems. Compared to
conventional video summarization approaches, our
scheme satisfies the identification of objects and re-
duces the noise and computational cost. To the best
of our knowledge, it is the first method applying IoT
information to the process of video summarization.

e Implementing a prototype system and performing an
experiment to assess its effectiveness. In a sample s-
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cenario video of IoT-based supply chain, our approach
achieves a lower noise rate than GMM during the
establishment of background models. Furthermore, it
returns satisfactory summarization results for queried
objects after the clustering and image stitching.

The other parts of this paper are organized as follows.
In Section II, an overview of RFID and video technologies
is presented. Section III describes our method, including
the technological details of video summarization for object
tracking in IoT. Section IV presents the experimental results.
Finally, Section V concludes this paper.

II.
A. Visual Object Tracking in loT

RELATED WORK

Based on RFID and video technologies, much work is
proposed for object tracking. Wang and Cheng [4] present
an indoor positioning and identification system consisting of
a camera, a RFID reader and a group of fixed RFID tags.
By analyzing signal strength of RFID tags and background
of video images, the system locates objects and extracts
foreground images of objects in the scene. Hasanuzzaman et
al. [6] describe a framework for medicine monitoring in IoT.
Their system builds background models from camera images
when RFID tags of medicine bottles are out of range of the
antenna. Once the antenna detects tags, the system starts to
extract foreground images. In [11], the integration of RFID
and video techniques is used to detect RFID-tagged objects
manipulated by users. Even if RFID tags are missing in the
new video, the learned models can be used for fuzzy visual
pattern recognition of activities and objects. The work in [12]
applies multiple cameras for tracking people. RFID antennas
are deployed to identify authorized people who carry active
RFID tags.

Using the integration of RFID and video techniques, object
recognition and tracking systems have good performance in
previous research. However, a major challenge is information
retrieval in a large scale of recorded video. Previous work has
not addressed the solutions for the explosive growth of visual
object tracking in IoT.

B. Video Summarization

Most existing video summarization methods concentrate
on identifying similarities of different video frames, and then
clustering a number of frames with the most dissimilar fea-
tures. For instance, Gong and Liu [9] present a method for
video summarization based on singular value decomposition.
They select a group of frames with the most different features
to represent the major video shots. Ueda et al. [13] use a three-
dimensional icon to represent a video shot with its duration.
With edge detection, their system generates icons from visual
objects in the video. Goldman et al. [14] propose a schematic
storyboard for video summarization. Through a subject motion
arrow, the main features of a sequence of keyframes are
displayed in the storyboard.

Besides keyframe selection, some recent studies enhance
the user interface to reduce the browsing complexity. Barnes
et al. [15] present a method called multi-scale video tapestries,
which contain continuous and zoomable visualizations for
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interactive video navigation. Unlike a timeline bar, video
tapestries are a group of summary frames in the video and
help users to understand the content. The work in [16] uses a
video cube in a 3D volume to display keyframes in the video.
Users are allowed to navigate to a part of the video content
through the 3D volume. In [10], video is summarized into
three levels: scenes represented with different colors, hand-
drawn sketch representation, and compact frames. Each level
has operations for interactive video browsing. Users are able
to select, zoom, or drag the summarization navigators by using
different gestures.

Although these approaches try to extract and present impor-
tant features by exclusively analyzing video frames, they still
require users to pick the right results of queried objects. In our
work, this limitation can be overcome by the [oT infrastructure.
RFID, together with timestamps, enables automatic identifica-
tion for queried objects in the process of video summarization.
On this basis, we propose a video summarization method for
object tracking in IoT.

I11.

In this section, we first give an overview of IoT-Based
video summarization. Then we present video and IoT data ac-
quisition of objects in the automated environment. Finally, we
illustrate the internal details of video summarization, including
foreground extraction and clustering.

PROPOSED METHODOLOGY

A. Overview

Our method allows users to skim the video content of sup-
ply chain in two ways: image interface and RFID interface for
every single item. The intention is to enhance the interaction
and usability of video tracking. Image interface is generated
from keyframe segmentations which focus on objects features.
These keyframe segmentations are organized together for the
same objects. While RFID interface shows the exact RFID
serial numbers, providing a fast hop to the shot of every single
item in the video content. Fig. 1 shows a screenshot of the main
features in an example interface.

1) Image Interface: For every item, a sequence of keyframe
segmentations is displayed as a timeline slider. Those segmen-
tations consist of video shots showing object features. This is a
popular way to locate a specific video shot in the whole video.
Rather than existing approaches, IoT data is used to improve
the precision and categorization of segmentation. According
to the timestamp of every item in IOT, several keyframes are
selected as background images. By using the Gaussian mixture
model, objects images are segmented from backgrounds in the
other keyframes. Finally, segmentations of the same objects are
integrated together. Users can both preview a video shot for
an object, or watch the video starting from the exact frame by
clicking an area of the image interface. Fig. 2 gives a possible
situation of image interface.

2) RFID Interface: Unique identifiers of RFID tags are
shown in RFID interface. According to timestamps in IoT,
RFID serial numbers are mapped to corresponding keyframes
of the video content. By selecting a target RFID serial number,
users can quickly seek a video shot of a target item. The
other item information is optional. Applications can specify
concrete types of information for different purposes. A possible
situation of RFID interface is given in Fig. 3.
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B. Video and IoT Data Acquisition

When an item passes a logistics sector (typically a conveyor
belt), the system both collects the RFID and video data. RFID
readers send RFID data to the control server. And the system
database stores the processed data. Through the control server,
RFID serial numbers are sent to IP cameras. Then, IP cameras
display these numbers and send video images to the control
server. The architecture of the process is shown in Fig. 4. After
a video file is completely created, we extract its keyframes.
Timestamps of RFID tags and keyframes will be used for video
summarization.
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Fig. 3. RFID interface

RFID Tag Video Data
= = = =
RFID Reader IP Camera

= = == =

Control Server

loT based GMM Foreground
Extraction

= =

K-means Clustering

—<‘_\’—L—,——

Applications

Database (::>

Fig. 4. Architecture of the process

C. Video Summarization

At the start of video summarization, the system queries for
all the timestamps of RFID tags and selects several keyframes
in the video. These timestamps are timings between two
adjacent passing objects. In other words, selected keyframes
contain no items in the screen. Based on the timestamps,
selected keyframes have approximately regular time gaps so
that all period of a video clip is covered.

1) Foreground Extraction: Our approach of foreground
extraction is similar to GMM in [17], where the values of
each pixel in a given time are defined as a “pixel process.”
With the timestamps in IoT, our approach selects fewer and
preciser keyframes to establish a fast evaluation of background
pixels.

In GMM, given a video clip, pixel {xq, yo} has its history
at a stated time ¢

X1, X} = {I(z0,90,8) 1 1 < i < 1} ey

where I denotes the sequence. In our method, a set of
keyframes {Fj,,...,F}p, } is selected to predict the state of
pixel {zg,yo} at a given time ¢. They maintain

1<bh <t<bnp (@)

With the help of IoT information, the amount of selected
frames is less than GMM, so that less computational power is
needed. Moreover, according to the timestamps in IoT, several
keyframes later than ¢ are selected, unlike only concerning
previous frames in other approaches. After the set of keyframes
is selected, the probability of each pixel value is

K
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The probability formula is similar to GMM, but the
weight wyp, ;. and Gaussian probability density function



N( X+, fb; by > 2b;,br, ) are No longer sensitive to the time ¢.
The weight wy, 5,, , the mean value uy, s, and covariance
matrix Xy, p, result from{F;,,...,F} }. Then the Gaussian
probability density function is defined as follows
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Thus, the value prediction of each pixel is characterized.
The rest of the process is similar to [17]. Since selected
keyframes cover frames at any time in a video clip, this model
will not be updated for new frames over time.
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In order to detect foreground area of each keyframe, we use
this model to go through the whole video clip. Any pixel which
is outside the match of this model is labelled as the foreground
area. Then the overall foreground area in a keyframe is
obtained. All of the connected components in foreground areas
are extracted by the two-pass, connected components algorithm
[18]. Finally, the keyframes with connected components are
clustered for summarization.

2) Clustering: The K-means algorithm is widely used to
partition data into a specific number of clusters. The processing
speed of K -means is generally faster than hierarchical cluster-
ing. As there are only two kinds of keyframes (with objects
and without objects), we use K-means to cluster keyframes
with K value of 2. For each keyframe, the width and length
of its largest connected component in foreground area are two
dimensions of a K-means vector.

Based on the above definition, the clustering is performed.
Because K is stable in this context, the clustering involves no
diagnostic checks for determining a better K. This improves
the performance of the clustering.

After clustering, vectors are divided into two groups. We
consider that the group with objects have greater widths and
lengths. More importantly, the exact coordinates of keyframes
in this group are used to segment images for summarization.
Upon a retrieval quest, we stitch segments for a specific object
or a group of objects. Applications can specify how the process
of image stitching is performed. Finally, we map each region
of the summarization image to the jump action of a time point
in the video player. The way of interaction is also open-ended
for different applications and devices, such as mouse clicks
and touching screen clicks.

IV. EXPERIMENTAL RESULTS

This section presents experiments carried on an example
video clip. Five items on a conveyor belt are recorded in
the video content. Based on IoT information, we first extract
foreground areas from keyframes and compare the proposed
approach to GMM. Then we cluster the keyframes with
foreground areas by using the K-means algorithm. Finally,
we segment and stitch keyframes for summarization.

Fig. 5(a) shows one of input frames. The extracted fore-
ground areas based on GMM and our method are shown in
Fig. 5(b) and Fig. 5(c), respectively. As we can see, the objects
are successfully extracted by both methods. Also, the shadow
of the object affects two methods due to the lack of shadow
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(a) Original image  (b) foreground area de- (c) foreground area de-

tected by GMM tected by our method

(e) item region detected by our method

Fig. 5. Foreground detection

elimination [19]. However, there is difference shown in Fig.
5(d) and Fig. 5(e), which are parts of Fig. 5(b) and Fig. 5(c).
We observe that the conveyor belt creates significant noise
in GMM, because of poor prediction for irregular movement
of the conveyor belt. Comparatively, the proposed approach
reduces most of noise of the conveyor belt by considering
several keyframes later than the extracted keyframes. This
indicates that applying IoT information is a feasible approach
to improve video tracking of objects in supply chains.

We analyze the extraction results of GMM and our method
from five keyframes, where five different objects in the video
clip are included. As shown in Fig. 6, about 84% noise of
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Fig. 6. A comparison of background noise pixels from the conveyor belt

the conveyor belt is eliminated by applying IoT information to
GMM. At a lower level, the proposed work has less noise than
GMM in every testing set. In spite of dynamic estimation for
new frames, GMM lacks the recognition of the fast moving
conveyor belt. In some circumstances, part of conveyor belt
and objects may be mixed. However, this result shows that
the accuracy of GMM can be improved. By applying IoT
information to select keyframes for background models, our
method extremely mitigates the effect of the fast moving
conveyor belt. In addition, the memory and computational
power requirements of the proposed approach are relatively
lower.

After the value of K is set to 2, we execute the K-means
algorithm to cluster keyframes with the extracted foreground
areas. Fig. 7 shows the distribution of the clustering results.
There is a clear contrast between the foreground areas in
frames with objects and frames without objects. Hence, the K-
means algorithm achieves desirable convergence. Based on the
results, it can be seen that the K -means algorithm is feasible
to cluster keyframes for our method.

Then we segment and stitch the foreground areas in
keyframes according to the clustering results. As expected,
foreground areas are integrated as a summarization image
showing the features of an object. Fig. 8 shows an example
of the summarization result. Without the redundant areas, the
summarization image gives users a compact overview of an
object in the supply chain. For different applications, the
summarization image may contain one object or a group of
objects.

From all the above figures, these experiments indicate that
the combination of RFID technology and GMM is effective for
foreground area extraction and clustering. More importantly,
this means that the presented work enables users to quickly
browse large video content for tracking objects in the supply
chain.
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Fig. 8.

Video summarization result

V. CONCLUSION AND FUTURE WORK

Object tracking in IoT provides critical capabilities for
supply chain management in smart cities. With the widespread
use of object tracking techniques in IoT, the integration of
RFID and video technology now becomes a crucial part
of object tracking applications. As a complement to this
integration, in this paper we present a novel method for
video summarization of object tracking in IoT. We apply
IoT information to keyframe selection during the construction
of background models. Using the K-means algorithm, we
cluster and stitch extracted foreground areas in keyframes.
Users are allowed to scan the video content through a compact



summarization image and the RFID serial number of an object.
The experimental results show that the proposed method is
suitable for visual object tracking in IoT-based supply chain
management.

In principle, our work could also extend conventional video
summarization approaches with environmental information
from other sensors (temperature, sound and pressure). More
useful features outside video images might improve the quality
of video summarization, as long as the semantic relevance
between sensor data and video images is determined.

Based on the infrastructure of IoT, future work will include
video summarization techniques for object tracking with other
kinds of sensors. We also plan to design multi-scale interactive
user interface for object tracking.
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