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ABSTRACT 
We develop and evaluate a data hiding method that enables 
smartphones to encrypt and embed sensitive information 
into carrier streams of sensor data. Our evaluation considers 
multiple handsets and a variety of data types, and we 
demonstrate that our method has a computational cost that 
allows real-time data hiding on smartphones with negligible 
distortion of the carrier stream. These characteristics make 
it suitable for smartphone applications involving privacy-
sensitive data such as medical monitoring systems and 
digital forensics tools. 
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INTRODUCTION 
We present and evaluate a data hiding method for 
smartphone sensing, which enables sensing applications to 
encrypt and embed sensitive data or identification codes 
within other data streams of a smartphone. Our method is 
motivated by the increasing diversity of sensor data that 
mobile devices generate, and the growing ecosystems of 
services that store, process, and share this data. 

The constellation of personal devices that we regularly use 
now includes smartphones, smartwatches, tablets, fitness 
sensors, and a variety of domestic appliances. These 
devices contain a growing set of increasingly sophisticated 
sensors which improve interaction and provide new 
services. The richness and volume of this data have given 
rise to research opportunities for the UbiComp community 
and beyond. For instance, research often demonstrates how 
smartphone data that we previously discarded as noise can 

actually contain valuable information [1]. Furthermore, 
research on quantified self, self-monitoring, and e-health 
aims to harness the data that our devices generate. 

This trend has motivated scientists across academia and 
industry to build platforms that collect, analyse, visualise, 
and share increasing amounts of end-user data generated 
from personal devices. It has become a norm for studies to 
instrument personal devices of volunteer participants 
(recruited both in-person or via app-stores), and much of 
this data may eventually become available for other 
scientists or the public in general. Initiatives such as 
Crawdad, Crowdsignals, and Nokia's Lausanne Data 
Collection Campaign are examples of how smartphone 
“traces” may be shared after the completion of an 
experiment. Similarly, the quantified-self movement has 
given rise to a large number of platforms where users may 
upload their health-related sensor data. While certain 
platforms may be free or come with associated costs, users 
typically share their data in exchange for a service.  

Often, multi-stream data from a user’s device is treated as a 
coherent data unit. For instance, a typical experiment may 
simultaneously collect accelerometer, heart rate, and GPS 
data. This set of sensor streams may then be uploaded to a 
server for analysis, visualisation and sharing. This approach 
to “bundling” sensor streams has two important downsides. 
Firstly, it treats all sensor streams unilaterally, overlooking 
the unique privacy aspects of each individual sensor stream. 
For instance, accelerometer data may not be as sensitive as 
GPS data. Secondly, users practically relent control of their 
data once it leaves their devices. 

Our work proposes a data hiding approach to address the 
privacy needs that arise when users share smartphone 
sensor data with scientists and platforms. Crucially, our 
technique is transparent, meaning that it is compatible with 
existing platforms and tools. As a result, users can maintain 
control of their sensitive data even after sharing it through 
online platforms, without having to give up those services. 
Additionally, the technique allows us to verify the integrity 
of embedded sensitive data, for example to confirm that no 
tampering has taken place in the form of record removal, 
decimal rounding, or filtering. Finally, our technique allows 
users to prove ownership of sensor or healthcare data that 
they have shared, and as such provides spoof resistance 
against tampered medical sensor data [31]. 
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BACKGROUND 
Data hiding is an application domain of digital 
watermarking techniques [7]. Traditionally, watermarks are 
found in official documents, and carry information about 
the object in which they are found. Watermarks are 
designed in way so that they are difficult to reproduce or 
counterfeit [12]. For example, banknotes have watermarks 
in the form of figures that become visible only under certain 
conditions.  

The practice of watermarking can be defined as 
imperceptibly altering an object to embed a message about 
it [12]. Embedding a watermark w into a host object C 
produces a new object Cw, such that w can be reliably 
located and extracted even after Cw has been subjected to 
transformations [8].  

In digital watermarking the host object C is a carrier signal 
of information, and the watermark w is a digital marker. 
The watermarking process is achieved through the 
introduction of errors not detectable by human perception 
[11]. Similar to traditional watermarking, digital 
watermarks can only be perceptible under specific 
conditions such as after using special extracting algorithms 
[33]. Unlike traditional watermarking, in digital 
watermarking when the carrier signal is copied or 
transferred, the watermark is also carried with the copy. 

Watermarking methods have been used in various 
applications including digital audio, images or videos. 
Typically, these are used for owner identification, content 
authentication and copy control [12]. Similarly, data hiding 
is particularly popular with biomedical data because of the 
need to imperceptibly carry metadata or additional sensitive 
data such as name, ID, or sensitive medical data [37]. In 
biomedical research, data hiding techniques embed data 
reversibly, since it is important to use it in its original state 
in the analyses. In our case though, we can be flexible as 
the host data is not sensitive. In this context, data hiding can 
improve management efficiency, provides an additional 
layer of security, and can ensure confidentiality, availability 
and reliability [7].  As such, data hiding allows us to embed 
a set of metadata or sensitive data, imperceptibly, within 
another data set or digital file. 

Finally, we observe that cryptographic techniques offer 
orthogonal benefits regarding these concerns. For this 
reason, data hiding techniques often encrypt the data before 
it is hidden. However, the key advantage of data hiding is 
the “physical” binding between carrier signal and digital 
marker in a manner that is transparent to computational 
infrastructure, can survive data migration, and does not give 
rise to software compatibility issues. 

Properties of Data Hiding Techniques 
Multiple data hiding techniques exist, and they can be 
classified in terms of three key properties [18].  

• Robustness: Robust techniques are those where data can 
be extracted successfully even after the carrier signal has 

undergone malicious attacks, modifications or 
transformations. This feature is particularly desirable in 
cases where the host is prone to modifications, either 
intentional, or unintentional. An example would be lossy 
compression. Fragile techniques are those where minor 
distortions affect the hidden data. This can serve useful 
tamper-proofing purposes (e.g., loss of hidden data can 
reveal and localise modification of data).  

• Imperceptibility: Data hiding techniques are considered 
as imperceptible when data is imperceptible to human 
under typical use. Hidden data can only be extracted 
algorithmically by an authorized user. Good 
imperceptibility also suggests high fidelity between the 
original work and the one containing data. 

• Capacity: Refers to the size of the payload that can be 
encoded within a unit of a host object. 

Traditionally in data hiding literature, there is a tradeoff 
between these three properties. Depending on the 
application domain, the priority of these properties varies. 
An additional constraint in the case of smartphones and 
mobile sensors is energy consumption and computational 
complexity. Previous work has highlighted that data hiding 
is more efficient than cryptography in terms of complexity 
and energy usage, and therefore more appropriate for 
resource-constrained hardware [18].  

Data Hiding and Smartphone Sensor Data 
Smartphone sensing techniques introduce a variety of 
applications and opportunities, such as activity recognition, 
health monitoring and intelligent transportation. However, 
smartphone sensor data may contain sensitive information, 
including GPS location, medical states (e.g., heart rate and 
travelled steps) and user profiles (e.g., identity, age, gender 
and calendar reminders). This challenges researchers in the 
design of smartphone sensing systems [20]. 

Although researchers can alleviate these problems using 
cryptography and privacy-preserving data mining 
techniques, existing approaches are still insufficient to keep 
information imperceptible or to prove the authenticity of 
sensor data [19, 22]. For this reason, data hiding techniques 
can benefit users, for example by hiding sensitive data 
within non-sensitive data. Furthermore, data hiding 
techniques can be used to prove ownership of smartphone 
sensor data without compromising anonymity. By 
embedding identification information into sensor data, 
sensing systems that collect data from multiple users (e.g. 
in crowdsensing) can easily verify the source of data and 
filter untrusted sources without establishing secure access 
APIs or explicit authentication mechanisms. 

Many projects have considered data hiding techniques, 
especially watermark-based methods, in smartphone-driven 
scenarios. Miao et al. [27] developed an Android 
application that uses digital watermarks to protect the 
ownership and integrity of digital photographs. They 
showed that the proposed approach can resist some 



common attacks, such as contrast change and compression. 
Zhou et al. [40] developed a system named AppInk that 
generates watermarked apps from the source code of 
original apps, to detect unauthorised apps which are 
repackaged by attackers. Suzuki et al. [35] developed a 
video annotation system which embeds real-time high-
frequency audio watermarks into video data of a 
smartphone camera. Because high-frequency audio is 
inaudible to humans, the audio quality of watermarked 
video data is not compromised. Hence, users can add 
annotations into video in the form of audio watermarks. 

Furthermore, data hiding has been used as a barcode-like 
mechanism. For example, previous work embeds hyperlinks 
within posters or videos [9], such that a mobile device can 
decode this information but it is not perceptible to humans. 
Similarly, researchers have shown how to embed 
information within an audio channel transmitted over 
loudspeakers [26] or the phone [30], a technique that can be 
used for ad-hoc secure pairing, verification, and 
synchronisation.  

In the context of sensor networks that may have to operate 
in untrusted environments, data hiding can meet the 
requirements of data integrity and authentication in 
communication. For example, Wang et al. [38] proposed an 
adaptive watermarking approach to achieve secure image 
transmission with low distortion and energy cost. Similarly, 
Zhang et al. [39] presented an end-to-end authentication 
scheme that employs watermarking for secure data 
aggregation. In these cases, watermarks are embedded by 
each sensor node, and the server can verify the sources of 
the incoming data despite an untrusted communication 
network.  

Our work builds on previous research in many ways. The 
recent proliferation of scientific and commercial platforms 
for sensor data has given rise to the need to consider 
“sensing” as the application itself. Therefore, we aim to 
provide users a transparent way to embed one set of 
smartphone sensor data within another. This will allow 
users to adopt services on a variety of platforms without 
necessarily trusting them with their sensitive data. Much 
like sensor nodes operating in an untrusted network [38, 
39], we can enable users’ personal devices to share sensor 
data with each other via untrusted platforms. Additionally, 
our approach establishes a physical binding between a 
sensor stream and annotation data, either to prove 
ownership of the sensor data (as demonstrated with photos 
[27]), to provide additional context (as has been shown for 
videos [35]), or for ad-hoc communication purposes (as has 
been used in ad-hoc pairing [26, 30]). 

STUDY 
Our objective is to investigate the feasibility of hiding one 
sensor stream within another on a smartphone. Due to the 
plethora of sensors, it is important to identify their main 
types for our purposes. Modern smartphones can provide 
sensor data across the following broad categories [21]: 

• hardware sensors that include motion sensors (e.g., 
accelerometer and gyroscope), position sensors (e.g., 
GPS and magnetometer), environmental sensors (e.g., 
light sensor and barometer), and multimedia hardware 
(e.g., microphone and dual-cameras).  

• software sensors that include operating system data (e.g. 
CPU load, network connections, app usage) and 
application data (e.g. calendar data, browsing history, 
music listening data). 

• human input, which captures phenomena that are 
imperceptible for hardware or software sensor, mainly 
using smartphone-based surveys and the Experience 
Sampling Method [23]. 

Given the diversity of data sources, there are two important 
characteristics that we consider for data hiding purposes: 

• frequency: some sensor data may be collected at high 
frequency, such as accelerometer and magnetometer data. 
Other sensors may provide data with much lower 
frequency, such as heart rate sensors, GPS, or human 
input text. Furthermore, some data may be constant, such 
as user identifier, names and date of birth. 

• privacy sensitivity: some data may be highly sensitive if 
exposed, such as date of birth, user identifier, or heart 
rate data. Other data may be less sensitive, for example 
accelerometer and gyroscope values. 

In the diagram below we map out many of the possible 
smartphone sensors in terms of their frequency and 
sensitivity. Data hiding is ideal for hiding low-frequency 
sensitive data into high-frequency non-sensitive data. It is 
challenging to objectively map the privacy concerns that 
may be associated with any particular sensor, since they can 
vary across users and strongly depend on what other data is 
available. For instance, gyroscope is typically used together 
with accelerometer to detect activities such as walking, 
standing, sitting and lying can be recognised with high 
accuracy 96% [3], while on the other hand complex 
activities (e.g., cooking, cleaning and sweeping) are still 
considered challenging to recognise [13]. Therefore, we 
rely on subjective assessment, heuristics, and our review of 
literature [19, 22, 28] to rate the privacy concerns for each 
sensor. We summarise the different types of sensor data in 
terms of frequency and sensitivity in Figure 1. 

DATA HIDING METHODOLOGY 
In data hiding techniques the payload can be hidden either 
in the time or frequency domain of the carrier. We adopt a 
time domain technique, and specifically a substitutive 
insertion method: parts of the carrier signal are replaced by 
the payload signal.  Specifically, we apply the Least 
Significant Bit (LSB) substitution scheme, replacing the 
carrier signal’s least significant bits with bits of the 
payload. This approach enables embedding data of high rate 
and size, while causing relatively insignificant 
modifications to the original values [15, 29].  



More importantly, our method is appropriate for real-time 
data hiding on limited-resource platforms such as 
smartphones, due to its low time complexity, and can 
therefore guarantee that the embedded data is synchronised 
with the carrier data. For example, let us assume that we 
need to embed a heart rate value into a stream of 
accelerometer values. We first obtain the binary 
representation of the heart rate value, which for instance 
can be a 32-bit integer. The next step is to embed each bit in 
the oncoming accelerometer stream, by replacing the LSBs 
of consecutive accelerometer values that have also been 
converted to binary form (see Figure 2). One bit is used for 
a flag to denote the existence of embedded data, and 
additional bits are used for the payload. Depending on how 
much we can afford to distort the carrier values, we can opt 
to replace two or more LSBs. 

 
Figure 1. Sensitivity and frequency of different sensor data. 

Authenticated encryption prior to embedding enables us to 
detect errors or tampering of the hidden data. Therefore, we 
apply the Advanced Encryption Standard (AES) in 
Galois/Counter Mode (GCM) [14, 32] to encrypt and 
authenticate the embedded data. GCM is a mode of 
operation that supports simultaneous encryption and 
authentication of a data stream in an efficient, parallelisable 
manner. To ensure the integrity of the data, an 
authentication tag is generated at the end of the input 
stream. The GCM mode is nonce-based which means that a 
unique public identifier called nonce or initialisation vector 
needs to be used for each set of data. Both the nonce and 
the secret encryption key are needed for decryption and to 
check the integrity of the data. Any tampering of the 
encrypted hidden data will be detected during the 
decrypting phase. 

For our evaluation we implemented our method on Android 
smartphones. We developed a pair of applications that run 
simultaneously and communicate via Intent messages 
within Android. The sensing application collects the 
sensitive data to be hidden and passes it to the data hiding 
application. The latter encrypts the received data, hides it 
into the carrier signal, and potentially stores it or transmits 
it to a third party. The two-application architecture was 

chosen to allow flexibility in practical scenarios, and to 
conduct a realistic assessment of performance. To extract 
the hidden data, the receiving party needs access to the 
carrier signal (sorted by timestamp), knowledge of the data 
types, how many LSBs are used, the pre-shared nonce, the 
authentication tag and encryption key. 

 
Figure 2. The Least Significant Bit (LSB) method replaces the 

least significant bits of the carrier signal with data to be 
embedded. 

Distortion of the Carrier Signal 
The distortion produced by hiding data into the carrier 
signal depends on the data type of the carrier signal and the 
number of LSBs. For example, given 32-bit integer types as 
the carrier signal, using n (0<n<32) LSBs for data hiding 
will produce an error from –(2n-1) to 2n-1. The cases where 
floating-point numbers serve as carrier signals are more 
complex. Suppose the carrier signal is a 32-bit single 
precision floating number f [17] defined as 

𝑓 = (−1)'×𝑐×2+,  (1) 

where s stands for the sign bit; c for the significand; and q 
for the exponent. 

If we use n (0<n<23) LSBs (which determine the 
significand c) for data hiding, we must know the exponent 
value q (which depends on the magnitude of the floating 
number) to quantify the maximal amount of error |Emax|. It 
can be calculated as 

|𝐸./0| = 212345+6
178  (2) 

This formula reveals that a small number of LSBs will 
produce negligible errors with floating-point numbers. 
However, the absolute amount of error can be very high for 
large q. Although q can be up to 127 to represent a valid 
real number [17], smartphone sensors generally output 
much smaller readings in practice, such as accelerometer 
[25]. Thus, floating-point numbers are ideal carrier signals, 
since data hiding can have a negligible distortion on them. 

EXPERIMENTAL DESIGN 
We evaluated the performance of our approach by running 
experiments with off-the-shelf smartphones. Considering 
the availability of AES/GCM encryption, we selected 6 
smartphones with Android OS version 5.0 or above:  

Samsung Galaxy S6 edge (5.1.1); two samples of Motorola 
Moto G X1032 (5.1); LG Nexus 5 (5.1.1); Motorola Moto 
G2 (5.0.2); Yota YotaPhone 2 (5.0).  



Experiment  Device Marker Carrier LSBs 

E1 All 
Magnetometer 

(3 x 32-bit float) 
(normal, UI, game, fastest) 

Accelerometer 
(3 x 32-bit float) 

(normal, UI, game, fastest) 
2 

E2 S6 
Magnetometer 

(3 x 32-bit float) 
(normal, UI, game, fastest) 

Accelerometer 
(3 x 32-bit float) 

(normal, UI, game, fastest) 
3 

E3 S6 
Heart rate sensor 

(32-bit int) 
(normal, UI, game, fastest) 

Accelerometer 
(1 x 32-bit float) 

(normal, UI, game, fastest) 
2 

E4 S6 
GPS 

(3 x 64-bit double) 
(0.1, 0.2, 1, 10 Hz) 

Accelerometer 
(3 x 32-bit float) 

(normal, UI, game, fastest) 
2 

E5  S6 
Human input 
(8-bit char) 

(1, 10, 100, 200 Hz) 

Accelerometer 
(1 x 32-bit float) 

(normal, UI, game, fastest) 
2 

E6 S6 
Device ID 

(16 x 8-bit char) 

Accelerometer 
(1 x 32-bit float) 

(normal, UI, game, fastest) 
2 

Table 1. Experimental parameters. The frequencies “normal, UI, game, fastest” are Android standards, and may perform 
differently across different handsets. The Least Significant Bit includes a 1-bit flag field. 

We installed our pair of Android applications on each 
handset. We first launched the data hiding application to 
initialise the encryption and carrier signal. Then, we 
launched the sensing application to collect the data to be 
hidden, and pass it along for hiding. Because it is 
impractical to exhaust all the combinations of multiple 
variables, we designed 6 experiments to examine a range of 
conditions as summarised in Table 1. 

We use the accelerometer as the carrier signal in all the 
experiments, and we consider 4 different sampling rates for 
it, as defined by Android. In E1 and E2 we hid 
magnetometer data at 4 different sampling rates. In E3 we 
hid heart rate data at 4 different sensing rates. In E4 we hid 
simulated streaming GPS data (64-bit double type in 3 
dimensions: latitude, longitude and altitude) generated at 4 
different frequencies. In E5, we hid simulated human input 
text at varying frequencies. In E6 we hid a device ID (an 
Android device ID has 16 characters). 

For experiments E1, E2 and E4, we used 3 axes of the 
accelerometer as the carrier, since in those experiments we 
effectively had 3 streams of data to hide. In the other 
experiments only the x axis was used as a carrier. In 
experiments 5 and 6, the data hiding application used the 8-
bit ASCII format. The experiments had a combination of 
sampling frequencies of the data to hide, and 4 frequencies 
of the carrier signal. Orthogonally, E1 had 6 different 

phones. Each condition ran for a period of 5 minutes, 
during which the performance of the system was monitored. 

EXPERIMENTAL RESULTS 
Figure 3 summarises the results in E1, where magnetometer 
data was encrypted and embedded into the accelerometer 
data using 4 different sampling rates on 6 handsets. The 
dark red shades represent the magnetometer records that 
were hidden, and the light blue shades above red shades 
represent the number of magnetometer records that could 
not be processed due to the too high bit rate of the payload, 
and therefore had to be dropped. 

E1 primarily acted as a “stress test” to highlight 
performance differences across handsets. As such, we 
induced record dropping due to the relatively high volume 
of magnetometer data that we attempted to hide, as well as 
variances in the capabilities of the handsets. The results 
show that the sampling rate at “normal” and “UI” was 
consistent across handsets. However, the handsets 
performed substantially differently at the “Game” and 
“Fastest” sampling rates, for instance with the S6 
outperforming G1 handsets by a factor of 2. 

We further investigate the variation in the carrier frequency 
across handsets in E1. Figure 4 shows the average 
accelerometer delay, which denotes the time gap between 
two adjacent samples. Sensing delay is an indirect measure 
of the ability to execute data hiding.  



 
Figure 3. Results of E1. The number of magnetometer readings which are successfully hidden is shown in red, and those dropped is 

shown in blue. The y axis is on a base-2 logarithmic scale.

Based on the sensing delay, we can estimate the capacity of 
accelerometer as a carrier signal on each device. Figure 5 
presents the capacity of one axis of the accelerometer for 2 
LSBs (1 bit flag & 1 bit payload). We observe that at the 
fastest sampling rate, all handsets can provide a capacity of 
more than 10B/s, with the highest being 26.8B/s for the S6. 
If 3 axes are used, then the capacity increases by a factor of 
3. In addition, the capacity increases proportionally for each 
additional payload bit we use. Therefore, we expect the S6 
with 3 axes and 3 LSBs (1-bit flag & 2-bit payload) to 
provide 26.8 × 3 × 2 = 160B/s capacity. 

Once our data hiding application received a new 
magnetometer data reading, it executed AES/GCM 
encryption and hid the ciphertext bits into the incoming 
accelerometer records. When the ciphertext bits are more 
than the payload of one accelerometer record, phones have 
to embed the rest cipher bits into more incoming 
accelerometer records.  

 
Figure 4. Average sensing delay of accelerometer for different 

handsets in E1. 

In Figure 6 we show the computational overhead that 
encryption induced in E1.  Results show that, on average, 
all the handsets were able to finish the task of encryption 
plus data hiding for one sample within 0.6 ~ 6.2ms for any 
condition (max: 302.13ms due to CPU scheduling). Of this 
time, less than 0.2 ~ 0.8ms on average (max: 428.95) was 
spent on just data hiding. 

Figure 7 shows the performance of the S6 handset across all 
experiments, and therefore for multiple data types. As 
expected, using an additional LSB in E2 doubled its 
capacity. In E3 we noted that the heart rate sensor hardware 
did not alter its sampling rate, contrary to Android API 
specifications. In E4, as expected, the results show that the 
number of GPS records we could hide was approximately 
half of the magnetometer in E1. In E5 the hidden data was 
simulated human entry text, which was on average 3 times 
faster than E1. In E6 we hid a Device Identification code, 
and therefore the sampling rate did not vary.  

 
Figure 5. Average capacity using one-axis accelerometer 

carrier on 6 phones, using 2 LSBs (1 bit flag & 1 bit payload). 



 
Figure 6. Average processing time for encryption & hiding (blue), or just hiding (red) in E1. This is the time needed for one 

magnetometer record. The y axis is in base-2 logarithmic scale.  

 
Figure 7. Performance of the S6 handset across all experiments. Number of readings which are successfully hidden is shown in red, 

and those dropped is shown in blue.  The y axis is on a base-2 logarithmic scale. 

Also, in E3 we observed that the accelerometer sampling 
rate was unexpectedly doubled compared to all other 
experiments (for UI speed: 30ms in E3 vs 60ms in other 
experiments). This is a phenomenon that we were able to 
reliably reproduce. Given the lack of official documentation 
we believe that on this particular handset, using the heart 
rate sensor triggers additional mechanisms that increase the 
sampling rate of the accelerometer. Figure 8 shows the 
average processing time of encryption and data hiding on 
S6 across all experiments. Considering encryption plus data 
hiding (blue), the average processing time follows the 

complexity of payload types and the number of LSBs: E1 
(32-bit float on 3 axes, 2 LSBs): 2.49ms; E2 (32-bit float on 
3 axes, 3 LSBs): 2.56ms; E3 (32-bit int, 2 LSBs): 1.14ms; 
E4 (64-bit double on 3 axes, 2 LSBs): 2.92ms; E5 (8-bit 
ASCII, 2 LSBs): 0.74ms; E6 (8-bit ASCII, 2 LSBs): 
0.52ms. Similar to the worst case (among all handsets) in 
E1, the worst cases in E2-E6 ranged from 40.76ms to 
380.67ms. When considering only data hiding (red), the S6 
handset was able to finish within 0.9ms on average across 
all 6 experiments. The worst cases in E2-E6 ranged from 
57.29ms to 593.36ms. 



 
Figure 8. Average processing time (S6 handset across all experiments) for encryption & hiding (blue), or just hiding (red) in E1. 

The y axis is in base-2 logarithmic scale. 

CPU Utilisation 
We also considered the impact of our data hiding method 
on CPU utilisation. We logged CPU utilization data for the 
S6 handset in E1 using the Android Device Monitor. We 
consider encryption and data hiding as two independent 
processes, since they are separate functions in our source 
code and can be monitored independently in CPU 
utilisation analysis.  

 
Figure 9. Inclusive time of CPU utilization (%) on S6 handset 
in E1. Separate utilisation is shown for encryption (red) and 

hiding (green).  

Figure 9 presents the results of encryption vs. hiding at 
different accelerometer sampling rates. Note that 100% of 
inclusive CPU time would indicate that the whole period 
when the data hiding application is running its thread uses a 
CPU. These results show that our software does not occupy 
the CPU all the time, meaning that the CPU may set the 
application thread into the wait state to save energy. We 
also observe that the CPU was occupied more often with 

data hiding rather than encryption, even though one call to 
the data hiding function takes much less time than one call 
to the encryption function (Figure 6). This disparity is due 
to the fact that each record of data to be hidden is encrypted 
once, but requires many calls to the data hiding function, 
since only 1 or 2 bits can be hidden at a time. For instance, 
a 32-bit payload is encrypted once but requires 32 calls to 
the data hiding function when using 2 LSBs (1-bit payload 
& 1-bit flag). 

 
Figure 10. Maximal distortion of acceleration for different 
LSBs and floating-point exponents. The y axis is in base-2 

logarithmic scale. 

Distortion 
According to standards [17], to represent a floating-point 
number v, the exponent value q in equation (1) must be 
maximised with the constraint that 2q is not greater than |v|. 
This means that the amount of error increases as the 
maximal possible value of |v| is greater. According to the 
measurement range of common smartphone accelerometer 



[25], q is at most 8. Figure 10 depicts the maximal 
distortion that we theoretically induce for different LSBs 
and exponents. The number of LSBs (i.e., n) depends on the 
experiment settings. 

We contrast the theoretical prediction with empirical data of 
the distortion in the carrier signal in E1 and E2 on the S6 
handset. The handset was placed on the flat table so that the 
z axis of accelerometer showed the gravity which was about 
10m/s2, as meaning that a floating point number needs q=3 
to represent this value. 

In E1 (where 2 LSBs are used) we recorded 2.861×10-6m/s2 
as the maximal absolute value of error in the carrier signal. 
This result exactly matches our theoretical estimation which 
is given by equation (2) when n=2 and q=3. Similarly, in E2 
(when the number of LSBs was 3), we logged the maximal 
absolute error 6.676×10-6m/s2. This also exactly matches 
our theoretical estimation where equation (2) has n=3 and 
q=3.  

DISCUSSION 

Performance 
Our results show that smartphone sensor streams can 
provide sufficiently high capacity for common data hiding 
scenarios, especially when used with high frequency carrier 
signals. Depending on the security concerns of smartphone 
sensing systems, a variety of smartphone data types, such as 
floating numbers (e.g., magnetometer and GPS), integers 
(e.g., heart rate) and characters (e.g., human input text and 
device ID code) can be a suitable payload hosted in the 
carrier signal. 

Indicatively, we measured on the S6 handset a maximum 
capacity of 26.8B/s with a 1-axis accelerometer carrier 
signal. Give the expected distortion shown in Figure 10, the 
capacity for 7 LSBs on a 3-axis carrier signal is 526B/s, 
with expected distortion between 10-5m/s2 and 4×10-3m/s2. 
To extract this hidden data, a recipient requires knowledge 
of: 

• the data type of the host signal; 

• the data type of hidden data; 
• the number of LSBs used in the host signal; 

• the host signal sorted by timestamp; 

• the information for decryption (in the case of 
AES/GCM, they are the nonce, the authentication 
tag and the decryption key). 

Beyond the confidentiality and integrity provided by 
AES/GCM encryption, hiding data into another sensor 
stream obscures the existence of sensitive and private data 
secret by making it imperceptible. Thus, as Lane et al. [22] 
have called for, using our approach the type and value of 
sensitive data streams are not accessible or noticeable to a 
third party, taking one step closer towards the preservation 
of privacy. For example, an attacker may find it useful to 
know that a user is uploading location data, even if they 

cannot see the actual data. Our method alleviates this 
concern by obscuring the existence of such sensitive data. 
In practice, this means that sensitive data is not stored in a 
separate database field (thus making it perceivable to third 
parties). In addition, if the payload is an encrypted identity 
code such as a device ID, it can be used to verify the 
authenticity of the carrier signal source. 

Implementation Issues 
Our approach has a manageable computational cost (Figure 
9), making it practical for smartphones [18] and allowing 
power-efficiency OS techniques to reduce its energy 
footprint, for example setting threads to sleep mode. In 
addition, the theoretical predictions regarding the distortion 
caused by our technique (Figure 10) have been empirically 
confirmed, thus guaranteeing the level of fidelity between 
the original carrier signal and the signal containing hidden 
information.  

This is important for a range of applications. Certain 
applications that use accelerometer data require high 
precision, such as gesture recognition [34], while other 
applications like scrolling via tilting [5] require crude 
precision since smartphone accelerometers and gyroscopes 
produce measurement errors anyway [10]. Our method is 
flexible enough to account for varying needs regarding the 
fidelity of processed data, by trading off fidelity and 
capacity. 

Our approach can be adopted by existing sensing systems 
that already support smartphone sensor data. In particular, 
we envision that a user with multiple devices (e.g. phone, 
tablet, smartwatch) would be able to transparently share 
sensitive between those devices via existing platforms. As 
long as each device has access to the sensor data, it is 
possible to extract and decrypt hidden data on the client, 
without allowing the platform to gain access, or even know 
that the hidden data exists. This is possible without 
modifying the platform itself, and not requiring additional 
“encrypted” fields to be supported.  

Medical Sensor Data 
Due to its technical characteristics, our proposed data 
hiding technique can help to address the legislation that 
many countries have to protect sensitive data, especially 
medical sensor data [4, 36]. In general, the development of 
medical information systems has been a challenging and 
costly affair for many countries [16] due to the complex 
privacy requirements.  

For instance, it is challenging to enable users to retain 
control of their own data after it has been entered in the 
system, and giving them access to this data is often a thorny 
issue [2]. Our method enables users to retain control of their 
sensitive data even after it has been uploaded on a 
healthcare information system. For example, during 
consultation a user could decrypt sensitive information 
using the secrets stored in their personal device, and show it 
to the doctor. 



Crowdsensing 
Additionally, our technique enables the verification of the 
authenticity or owner of smartphone sensor data. This is 
particularly relevant to mobile crowdsensing scenarios, 
either user-driven [6] or agent-driven [24], with diverse 
application including environmental monitoring and 
intelligent transportation. In such settings, malicious users 
or faulty systems can upload tampered or faked data to 
damage the systems or to defraud benefits if the systems 
offer rewards for uploading certain data. In this scenario, 
our technique can offer crucial digital evidence for 
forensics [28] to ensure the authenticity of smartphone 
sensor data. For example, this can be achieved by 
smartphone applications embedding an encrypted unique 
identification number into every uploaded sensor data 
stream. When the streams are received, their authenticity 
can be established by inspecting the identification number. 
If the received data stream does not contain the ID assigned 
to a particular client, the systems can consider the data 
invalid and ignore it.  

Along the same lines, initiatives such as Crawdad and 
Crowdsignals are building up large archives of sensor data. 
Using our technique, it is possible for users to “physically” 
embed in this data a unique signature that serves as proof of 
ownership of the data, and can be used to confirm that no 
tampering has taken place. The “physical” binding means 
that even if this sensor data is shared between scientists via 
email, database services, physical media, and across a 
variety of file formats, the hidden data persists. This 
property also ensures that it is “future proof”, in the sense 
that if in the future new ways of sharing data is established, 
the hidden data will remain available as proof of who owns 
or generated this sensor stream. 

LIMITATIONS AND FUTURE WORK 
We have only verified our approach on 6 phones with 
Android OS 5.0 or above, and we are aware that 
approximately 65% of Android smartphones run a lower 
version that 5.0 at time of writing.  We expect our method’s 
performance to vary across different handsets, but only in 
terms of capacity and CPU load. The other features of our 
method should remain invariant. 

Clearly, our method has not been tested on other operating 
systems, such as Symbian, iOS and Windows, and this 
would be a crucial next step for our work. A key challenge 
may be that the implementation of AES/GCM may be 
unavailable on other handsets, meaning that an ad-hoc 
algorithm may be needed. Although developers can employ 
other encryption algorithms, this may downgrade the 
performance and security level. Another technical issue is 
that the computational efficiency in other handsets 
environments can be significantly lower than Android 5.0, 
meaning that they cannot use high-frequency sensor data as 
the carrier signal. 

In addition, we have not tested our method with a broad 
range of external sensors or devices (such as smartwatches). 

Platforms with higher constraints (such as smartwatches) 
may find it challenging to attain high capacity data hiding.  

During the selection of carrier signals, objectively 
quantifying the sensitivity of each sensor can provide 
greater robustness to the data hiding mechanism. This 
requires a substantial body of future work. The positions of 
sensors (i.e., their sensitivity) in Figure 1 may depend on 
various factors, such as social context, network 
environments and capabilities of attackers. 

Our future work will also include a mechanism to balance 
the tradeoff between capacity and fidelity in carrier signals. 
A large number of LSBs leads to high capacity and low 
fidelity in the carrier signals. Therefore, this mechanism 
should adaptively identify a suitable upper bound of LSBs 
in different types of data hiding scenarios. 

CONCLUSION 
We propose a data hiding method to embed sensitive 
information into smartphone sensor data streams. Our 
method combines encryption with data hiding, and can be 
adopted by smartphone sensing systems to secure sensitive 
data or to prove the authenticity of data. Due to the 
imperceptibility of data hiding techniques, an 
unauthenticated party does not notice the type and value of 
hidden sensitive data stream by interception, thus 
alleviating some of the privacy problems of smartphone 
sensing systems mentioned in literature [22].  

We evaluated with a variety of handsets, data types, and 
settings. Our experimental results show that it is feasible to 
encrypt and embed common types of smartphone data (e.g., 
magnetometer readings, heart rate, GPS location, human 
input text and device identification code) into high-
frequency sensor streams, such as accelerometer, in real 
time. Moreover, we show that AES/GCM encryption and 
data hiding operations have manageable impact on the CPU 
utilisation of the sensing application thread, meaning that 
our approach will not be bottlenecked by resource-
constrained environments of smartphones. We demonstrate 
that our approach is able to maintain high fidelity after data 
hiding, and can provide strong guarantees regarding fidelity 
by adjusting the number of LSBs used for hiding. Our 
findings make this data hiding method attractive for 
smartphones sensing systems that collect sensitive data or 
require high data authenticity, such as medical systems and 
digital forensics applications. 
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