
A Data Hiding Approach for Sensitive Smartphone Data
Chu Luo1, Angelos Fylakis2, Juha Partala2, Simon Klakegg1, Jorge Goncalves1,

Kaitai Liang3, Tapio Seppänen2, Vassilis Kostakos1

1Center for Ubiquitous Computing, University of Oulu, Finland
2Center for Machine Vision and Signal Analysis, University of Oulu, Finland

3Department of Computer Science, Aalto University, Finland
1,2firstname.lastname@ee.oulu.fi, 3kaitai.liang@aalto.fi

ABSTRACT
We develop and evaluate a data hiding method that enables
smartphones to encrypt and embed sensitive information
into carrier streams of sensor data. Our evaluation considers
multiple handsets and a variety of data types, and we
demonstrate that our method has a computational cost that
allows real-time data hiding on smartphones with negligible
distortion of the carrier stream. These characteristics make
it suitable for smartphone applications involving privacy-
sensitive data such as medical monitoring systems and
digital forensics tools.

Author Keywords
Smartphones; ubiquitous computing; privacy protections;
digital signal processing; mobile and wireless security.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
We present and evaluate a data hiding method for
smartphone sensing, which enables sensing applications to
encrypt and embed sensitive data or identification codes
within other data streams of a smartphone. Our method is
motivated by the increasing diversity of sensor data that
mobile devices generate, and the growing ecosystems of
services that store, process, and share this data.

The constellation of personal devices that we regularly use
now includes smartphones, smartwatches, tablets, fitness
sensors, and a variety of domestic appliances. These
devices contain a growing set of increasingly sophisticated
sensors which improve interaction and provide new
services. The richness and volume of this data have given
rise to research opportunities for the UbiComp community
and beyond. For instance, research often demonstrates how
smartphone data that we previously discarded as noise can

actually contain valuable information [1]. Furthermore,
research on quantified self, self-monitoring, and e-health
aims to harness the data that our devices generate.

This trend has motivated scientists across academia and
industry to build platforms that collect, analyse, visualise,
and share increasing amounts of end-user data generated
from personal devices. It has become a norm for studies to
instrument personal devices of volunteer participants
(recruited both in-person or via app-stores), and much of
this data may eventually become available for other
scientists or the public in general. Initiatives such as
Crawdad, Crowdsignals, and Nokia's Lausanne Data
Collection Campaign are examples of how smartphone
“traces” may be shared after the completion of an
experiment. Similarly, the quantified-self movement has
given rise to a large number of platforms where users may
upload their health-related sensor data. While certain
platforms may be free or come with associated costs, users
typically share their data in exchange for a service.

Often, multi-stream data from a user’s device is treated as a
coherent data unit. For instance, a typical experiment may
simultaneously collect accelerometer, heart rate, and GPS
data. This set of sensor streams may then be uploaded to a
server for analysis, visualisation and sharing. This approach
to “bundling” sensor streams has two important downsides.
Firstly, it treats all sensor streams unilaterally, overlooking
the unique privacy aspects of each individual sensor stream.
For instance, accelerometer data may not be as sensitive as
GPS data. Secondly, users practically relent control of their
data once it leaves their devices.

Our work proposes a data hiding approach to address the
privacy needs that arise when users share smartphone
sensor data with scientists and platforms. Crucially, our
technique is transparent, meaning that it is compatible with
existing platforms and tools. As a result, users can maintain
control of their sensitive data even after sharing it through
online platforms, without having to give up those services.
Additionally, the technique allows us to verify the integrity
of embedded sensitive data, for example to confirm that no
tampering has taken place in the form of record removal,
decimal rounding, or filtering. Finally, our technique allows
users to prove ownership of sensor or healthcare data that
they have shared, and as such provides spoof resistance
against tampered medical sensor data [31].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
UbiComp '16, September 12 - 16, 2016, Heidelberg, Germany
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-4461-6/16/09…$15.00
DOI: http://dx.doi.org/10.1145/2971648.2971686

BACKGROUND
Data hiding is an application domain of digital
watermarking techniques [7]. Traditionally, watermarks are
found in official documents, and carry information about
the object in which they are found. Watermarks are
designed in way so that they are difficult to reproduce or
counterfeit [12]. For example, banknotes have watermarks
in the form of figures that become visible only under certain
conditions.

The practice of watermarking can be defined as
imperceptibly altering an object to embed a message about
it [12]. Embedding a watermark w into a host object C
produces a new object Cw, such that w can be reliably
located and extracted even after Cw has been subjected to
transformations [8].

In digital watermarking the host object C is a carrier signal
of information, and the watermark w is a digital marker.
The watermarking process is achieved through the
introduction of errors not detectable by human perception
[11]. Similar to traditional watermarking, digital
watermarks can only be perceptible under specific
conditions such as after using special extracting algorithms
[33]. Unlike traditional watermarking, in digital
watermarking when the carrier signal is copied or
transferred, the watermark is also carried with the copy.

Watermarking methods have been used in various
applications including digital audio, images or videos.
Typically, these are used for owner identification, content
authentication and copy control [12]. Similarly, data hiding
is particularly popular with biomedical data because of the
need to imperceptibly carry metadata or additional sensitive
data such as name, ID, or sensitive medical data [37]. In
biomedical research, data hiding techniques embed data
reversibly, since it is important to use it in its original state
in the analyses. In our case though, we can be flexible as
the host data is not sensitive. In this context, data hiding can
improve management efficiency, provides an additional
layer of security, and can ensure confidentiality, availability
and reliability [7]. As such, data hiding allows us to embed
a set of metadata or sensitive data, imperceptibly, within
another data set or digital file.

Finally, we observe that cryptographic techniques offer
orthogonal benefits regarding these concerns. For this
reason, data hiding techniques often encrypt the data before
it is hidden. However, the key advantage of data hiding is
the “physical” binding between carrier signal and digital
marker in a manner that is transparent to computational
infrastructure, can survive data migration, and does not give
rise to software compatibility issues.

Properties of Data Hiding Techniques
Multiple data hiding techniques exist, and they can be
classified in terms of three key properties [18].

• Robustness: Robust techniques are those where data can
be extracted successfully even after the carrier signal has

undergone malicious attacks, modifications or
transformations. This feature is particularly desirable in
cases where the host is prone to modifications, either
intentional, or unintentional. An example would be lossy
compression. Fragile techniques are those where minor
distortions affect the hidden data. This can serve useful
tamper-proofing purposes (e.g., loss of hidden data can
reveal and localise modification of data).

• Imperceptibility: Data hiding techniques are considered
as imperceptible when data is imperceptible to human
under typical use. Hidden data can only be extracted
algorithmically by an authorized user. Good
imperceptibility also suggests high fidelity between the
original work and the one containing data.

• Capacity: Refers to the size of the payload that can be
encoded within a unit of a host object.

Traditionally in data hiding literature, there is a tradeoff
between these three properties. Depending on the
application domain, the priority of these properties varies.
An additional constraint in the case of smartphones and
mobile sensors is energy consumption and computational
complexity. Previous work has highlighted that data hiding
is more efficient than cryptography in terms of complexity
and energy usage, and therefore more appropriate for
resource-constrained hardware [18].

Data Hiding and Smartphone Sensor Data
Smartphone sensing techniques introduce a variety of
applications and opportunities, such as activity recognition,
health monitoring and intelligent transportation. However,
smartphone sensor data may contain sensitive information,
including GPS location, medical states (e.g., heart rate and
travelled steps) and user profiles (e.g., identity, age, gender
and calendar reminders). This challenges researchers in the
design of smartphone sensing systems [20].

Although researchers can alleviate these problems using
cryptography and privacy-preserving data mining
techniques, existing approaches are still insufficient to keep
information imperceptible or to prove the authenticity of
sensor data [19, 22]. For this reason, data hiding techniques
can benefit users, for example by hiding sensitive data
within non-sensitive data. Furthermore, data hiding
techniques can be used to prove ownership of smartphone
sensor data without compromising anonymity. By
embedding identification information into sensor data,
sensing systems that collect data from multiple users (e.g.
in crowdsensing) can easily verify the source of data and
filter untrusted sources without establishing secure access
APIs or explicit authentication mechanisms.

Many projects have considered data hiding techniques,
especially watermark-based methods, in smartphone-driven
scenarios. Miao et al. [27] developed an Android
application that uses digital watermarks to protect the
ownership and integrity of digital photographs. They
showed that the proposed approach can resist some

common attacks, such as contrast change and compression.
Zhou et al. [40] developed a system named AppInk that
generates watermarked apps from the source code of
original apps, to detect unauthorised apps which are
repackaged by attackers. Suzuki et al. [35] developed a
video annotation system which embeds real-time high-
frequency audio watermarks into video data of a
smartphone camera. Because high-frequency audio is
inaudible to humans, the audio quality of watermarked
video data is not compromised. Hence, users can add
annotations into video in the form of audio watermarks.

Furthermore, data hiding has been used as a barcode-like
mechanism. For example, previous work embeds hyperlinks
within posters or videos [9], such that a mobile device can
decode this information but it is not perceptible to humans.
Similarly, researchers have shown how to embed
information within an audio channel transmitted over
loudspeakers [26] or the phone [30], a technique that can be
used for ad-hoc secure pairing, verification, and
synchronisation.

In the context of sensor networks that may have to operate
in untrusted environments, data hiding can meet the
requirements of data integrity and authentication in
communication. For example, Wang et al. [38] proposed an
adaptive watermarking approach to achieve secure image
transmission with low distortion and energy cost. Similarly,
Zhang et al. [39] presented an end-to-end authentication
scheme that employs watermarking for secure data
aggregation. In these cases, watermarks are embedded by
each sensor node, and the server can verify the sources of
the incoming data despite an untrusted communication
network.

Our work builds on previous research in many ways. The
recent proliferation of scientific and commercial platforms
for sensor data has given rise to the need to consider
“sensing” as the application itself. Therefore, we aim to
provide users a transparent way to embed one set of
smartphone sensor data within another. This will allow
users to adopt services on a variety of platforms without
necessarily trusting them with their sensitive data. Much
like sensor nodes operating in an untrusted network [38,
39], we can enable users’ personal devices to share sensor
data with each other via untrusted platforms. Additionally,
our approach establishes a physical binding between a
sensor stream and annotation data, either to prove
ownership of the sensor data (as demonstrated with photos
[27]), to provide additional context (as has been shown for
videos [35]), or for ad-hoc communication purposes (as has
been used in ad-hoc pairing [26, 30]).

STUDY
Our objective is to investigate the feasibility of hiding one
sensor stream within another on a smartphone. Due to the
plethora of sensors, it is important to identify their main
types for our purposes. Modern smartphones can provide
sensor data across the following broad categories [21]:

• hardware sensors that include motion sensors (e.g.,
accelerometer and gyroscope), position sensors (e.g.,
GPS and magnetometer), environmental sensors (e.g.,
light sensor and barometer), and multimedia hardware
(e.g., microphone and dual-cameras).

• software sensors that include operating system data (e.g.
CPU load, network connections, app usage) and
application data (e.g. calendar data, browsing history,
music listening data).

• human input, which captures phenomena that are
imperceptible for hardware or software sensor, mainly
using smartphone-based surveys and the Experience
Sampling Method [23].

Given the diversity of data sources, there are two important
characteristics that we consider for data hiding purposes:

• frequency: some sensor data may be collected at high
frequency, such as accelerometer and magnetometer data.
Other sensors may provide data with much lower
frequency, such as heart rate sensors, GPS, or human
input text. Furthermore, some data may be constant, such
as user identifier, names and date of birth.

• privacy sensitivity: some data may be highly sensitive if
exposed, such as date of birth, user identifier, or heart
rate data. Other data may be less sensitive, for example
accelerometer and gyroscope values.

In the diagram below we map out many of the possible
smartphone sensors in terms of their frequency and
sensitivity. Data hiding is ideal for hiding low-frequency
sensitive data into high-frequency non-sensitive data. It is
challenging to objectively map the privacy concerns that
may be associated with any particular sensor, since they can
vary across users and strongly depend on what other data is
available. For instance, gyroscope is typically used together
with accelerometer to detect activities such as walking,
standing, sitting and lying can be recognised with high
accuracy 96% [3], while on the other hand complex
activities (e.g., cooking, cleaning and sweeping) are still
considered challenging to recognise [13]. Therefore, we
rely on subjective assessment, heuristics, and our review of
literature [19, 22, 28] to rate the privacy concerns for each
sensor. We summarise the different types of sensor data in
terms of frequency and sensitivity in Figure 1.

DATA HIDING METHODOLOGY
In data hiding techniques the payload can be hidden either
in the time or frequency domain of the carrier. We adopt a
time domain technique, and specifically a substitutive
insertion method: parts of the carrier signal are replaced by
the payload signal. Specifically, we apply the Least
Significant Bit (LSB) substitution scheme, replacing the
carrier signal’s least significant bits with bits of the
payload. This approach enables embedding data of high rate
and size, while causing relatively insignificant
modifications to the original values [15, 29].

More importantly, our method is appropriate for real-time
data hiding on limited-resource platforms such as
smartphones, due to its low time complexity, and can
therefore guarantee that the embedded data is synchronised
with the carrier data. For example, let us assume that we
need to embed a heart rate value into a stream of
accelerometer values. We first obtain the binary
representation of the heart rate value, which for instance
can be a 32-bit integer. The next step is to embed each bit in
the oncoming accelerometer stream, by replacing the LSBs
of consecutive accelerometer values that have also been
converted to binary form (see Figure 2). One bit is used for
a flag to denote the existence of embedded data, and
additional bits are used for the payload. Depending on how
much we can afford to distort the carrier values, we can opt
to replace two or more LSBs.

Figure 1. Sensitivity and frequency of different sensor data.

Authenticated encryption prior to embedding enables us to
detect errors or tampering of the hidden data. Therefore, we
apply the Advanced Encryption Standard (AES) in
Galois/Counter Mode (GCM) [14, 32] to encrypt and
authenticate the embedded data. GCM is a mode of
operation that supports simultaneous encryption and
authentication of a data stream in an efficient, parallelisable
manner. To ensure the integrity of the data, an
authentication tag is generated at the end of the input
stream. The GCM mode is nonce-based which means that a
unique public identifier called nonce or initialisation vector
needs to be used for each set of data. Both the nonce and
the secret encryption key are needed for decryption and to
check the integrity of the data. Any tampering of the
encrypted hidden data will be detected during the
decrypting phase.

For our evaluation we implemented our method on Android
smartphones. We developed a pair of applications that run
simultaneously and communicate via Intent messages
within Android. The sensing application collects the
sensitive data to be hidden and passes it to the data hiding
application. The latter encrypts the received data, hides it
into the carrier signal, and potentially stores it or transmits
it to a third party. The two-application architecture was

chosen to allow flexibility in practical scenarios, and to
conduct a realistic assessment of performance. To extract
the hidden data, the receiving party needs access to the
carrier signal (sorted by timestamp), knowledge of the data
types, how many LSBs are used, the pre-shared nonce, the
authentication tag and encryption key.

Figure 2. The Least Significant Bit (LSB) method replaces the

least significant bits of the carrier signal with data to be
embedded.

Distortion of the Carrier Signal
The distortion produced by hiding data into the carrier
signal depends on the data type of the carrier signal and the
number of LSBs. For example, given 32-bit integer types as
the carrier signal, using n (0<n<32) LSBs for data hiding
will produce an error from –(2n-1) to 2n-1. The cases where
floating-point numbers serve as carrier signals are more
complex. Suppose the carrier signal is a 32-bit single
precision floating number f [17] defined as

𝑓 = (−1)'×𝑐×2+, (1)

where s stands for the sign bit; c for the significand; and q
for the exponent.

If we use n (0<n<23) LSBs (which determine the
significand c) for data hiding, we must know the exponent
value q (which depends on the magnitude of the floating
number) to quantify the maximal amount of error |Emax|. It
can be calculated as

|𝐸./0| = 212345+6
178 (2)

This formula reveals that a small number of LSBs will
produce negligible errors with floating-point numbers.
However, the absolute amount of error can be very high for
large q. Although q can be up to 127 to represent a valid
real number [17], smartphone sensors generally output
much smaller readings in practice, such as accelerometer
[25]. Thus, floating-point numbers are ideal carrier signals,
since data hiding can have a negligible distortion on them.

EXPERIMENTAL DESIGN
We evaluated the performance of our approach by running
experiments with off-the-shelf smartphones. Considering
the availability of AES/GCM encryption, we selected 6
smartphones with Android OS version 5.0 or above:

Samsung Galaxy S6 edge (5.1.1); two samples of Motorola
Moto G X1032 (5.1); LG Nexus 5 (5.1.1); Motorola Moto
G2 (5.0.2); Yota YotaPhone 2 (5.0).

Experiment Device Marker Carrier LSBs

E1 All
Magnetometer

(3 x 32-bit float)
(normal, UI, game, fastest)

Accelerometer
(3 x 32-bit float)

(normal, UI, game, fastest)
2

E2 S6
Magnetometer

(3 x 32-bit float)
(normal, UI, game, fastest)

Accelerometer
(3 x 32-bit float)

(normal, UI, game, fastest)
3

E3 S6
Heart rate sensor

(32-bit int)
(normal, UI, game, fastest)

Accelerometer
(1 x 32-bit float)

(normal, UI, game, fastest)
2

E4 S6
GPS

(3 x 64-bit double)
(0.1, 0.2, 1, 10 Hz)

Accelerometer
(3 x 32-bit float)

(normal, UI, game, fastest)
2

E5 S6
Human input
(8-bit char)

(1, 10, 100, 200 Hz)

Accelerometer
(1 x 32-bit float)

(normal, UI, game, fastest)
2

E6 S6
Device ID

(16 x 8-bit char)

Accelerometer
(1 x 32-bit float)

(normal, UI, game, fastest)
2

Table 1. Experimental parameters. The frequencies “normal, UI, game, fastest” are Android standards, and may perform
differently across different handsets. The Least Significant Bit includes a 1-bit flag field.

We installed our pair of Android applications on each
handset. We first launched the data hiding application to
initialise the encryption and carrier signal. Then, we
launched the sensing application to collect the data to be
hidden, and pass it along for hiding. Because it is
impractical to exhaust all the combinations of multiple
variables, we designed 6 experiments to examine a range of
conditions as summarised in Table 1.

We use the accelerometer as the carrier signal in all the
experiments, and we consider 4 different sampling rates for
it, as defined by Android. In E1 and E2 we hid
magnetometer data at 4 different sampling rates. In E3 we
hid heart rate data at 4 different sensing rates. In E4 we hid
simulated streaming GPS data (64-bit double type in 3
dimensions: latitude, longitude and altitude) generated at 4
different frequencies. In E5, we hid simulated human input
text at varying frequencies. In E6 we hid a device ID (an
Android device ID has 16 characters).

For experiments E1, E2 and E4, we used 3 axes of the
accelerometer as the carrier, since in those experiments we
effectively had 3 streams of data to hide. In the other
experiments only the x axis was used as a carrier. In
experiments 5 and 6, the data hiding application used the 8-
bit ASCII format. The experiments had a combination of
sampling frequencies of the data to hide, and 4 frequencies
of the carrier signal. Orthogonally, E1 had 6 different

phones. Each condition ran for a period of 5 minutes,
during which the performance of the system was monitored.

EXPERIMENTAL RESULTS
Figure 3 summarises the results in E1, where magnetometer
data was encrypted and embedded into the accelerometer
data using 4 different sampling rates on 6 handsets. The
dark red shades represent the magnetometer records that
were hidden, and the light blue shades above red shades
represent the number of magnetometer records that could
not be processed due to the too high bit rate of the payload,
and therefore had to be dropped.

E1 primarily acted as a “stress test” to highlight
performance differences across handsets. As such, we
induced record dropping due to the relatively high volume
of magnetometer data that we attempted to hide, as well as
variances in the capabilities of the handsets. The results
show that the sampling rate at “normal” and “UI” was
consistent across handsets. However, the handsets
performed substantially differently at the “Game” and
“Fastest” sampling rates, for instance with the S6
outperforming G1 handsets by a factor of 2.

We further investigate the variation in the carrier frequency
across handsets in E1. Figure 4 shows the average
accelerometer delay, which denotes the time gap between
two adjacent samples. Sensing delay is an indirect measure
of the ability to execute data hiding.

Figure 3. Results of E1. The number of magnetometer readings which are successfully hidden is shown in red, and those dropped is

shown in blue. The y axis is on a base-2 logarithmic scale.

Based on the sensing delay, we can estimate the capacity of
accelerometer as a carrier signal on each device. Figure 5
presents the capacity of one axis of the accelerometer for 2
LSBs (1 bit flag & 1 bit payload). We observe that at the
fastest sampling rate, all handsets can provide a capacity of
more than 10B/s, with the highest being 26.8B/s for the S6.
If 3 axes are used, then the capacity increases by a factor of
3. In addition, the capacity increases proportionally for each
additional payload bit we use. Therefore, we expect the S6
with 3 axes and 3 LSBs (1-bit flag & 2-bit payload) to
provide 26.8 × 3 × 2 = 160B/s capacity.

Once our data hiding application received a new
magnetometer data reading, it executed AES/GCM
encryption and hid the ciphertext bits into the incoming
accelerometer records. When the ciphertext bits are more
than the payload of one accelerometer record, phones have
to embed the rest cipher bits into more incoming
accelerometer records.

Figure 4. Average sensing delay of accelerometer for different

handsets in E1.

In Figure 6 we show the computational overhead that
encryption induced in E1. Results show that, on average,
all the handsets were able to finish the task of encryption
plus data hiding for one sample within 0.6 ~ 6.2ms for any
condition (max: 302.13ms due to CPU scheduling). Of this
time, less than 0.2 ~ 0.8ms on average (max: 428.95) was
spent on just data hiding.

Figure 7 shows the performance of the S6 handset across all
experiments, and therefore for multiple data types. As
expected, using an additional LSB in E2 doubled its
capacity. In E3 we noted that the heart rate sensor hardware
did not alter its sampling rate, contrary to Android API
specifications. In E4, as expected, the results show that the
number of GPS records we could hide was approximately
half of the magnetometer in E1. In E5 the hidden data was
simulated human entry text, which was on average 3 times
faster than E1. In E6 we hid a Device Identification code,
and therefore the sampling rate did not vary.

Figure 5. Average capacity using one-axis accelerometer

carrier on 6 phones, using 2 LSBs (1 bit flag & 1 bit payload).

Figure 6. Average processing time for encryption & hiding (blue), or just hiding (red) in E1. This is the time needed for one

magnetometer record. The y axis is in base-2 logarithmic scale.

Figure 7. Performance of the S6 handset across all experiments. Number of readings which are successfully hidden is shown in red,

and those dropped is shown in blue. The y axis is on a base-2 logarithmic scale.

Also, in E3 we observed that the accelerometer sampling
rate was unexpectedly doubled compared to all other
experiments (for UI speed: 30ms in E3 vs 60ms in other
experiments). This is a phenomenon that we were able to
reliably reproduce. Given the lack of official documentation
we believe that on this particular handset, using the heart
rate sensor triggers additional mechanisms that increase the
sampling rate of the accelerometer. Figure 8 shows the
average processing time of encryption and data hiding on
S6 across all experiments. Considering encryption plus data
hiding (blue), the average processing time follows the

complexity of payload types and the number of LSBs: E1
(32-bit float on 3 axes, 2 LSBs): 2.49ms; E2 (32-bit float on
3 axes, 3 LSBs): 2.56ms; E3 (32-bit int, 2 LSBs): 1.14ms;
E4 (64-bit double on 3 axes, 2 LSBs): 2.92ms; E5 (8-bit
ASCII, 2 LSBs): 0.74ms; E6 (8-bit ASCII, 2 LSBs):
0.52ms. Similar to the worst case (among all handsets) in
E1, the worst cases in E2-E6 ranged from 40.76ms to
380.67ms. When considering only data hiding (red), the S6
handset was able to finish within 0.9ms on average across
all 6 experiments. The worst cases in E2-E6 ranged from
57.29ms to 593.36ms.

Figure 8. Average processing time (S6 handset across all experiments) for encryption & hiding (blue), or just hiding (red) in E1.

The y axis is in base-2 logarithmic scale.

CPU Utilisation
We also considered the impact of our data hiding method
on CPU utilisation. We logged CPU utilization data for the
S6 handset in E1 using the Android Device Monitor. We
consider encryption and data hiding as two independent
processes, since they are separate functions in our source
code and can be monitored independently in CPU
utilisation analysis.

Figure 9. Inclusive time of CPU utilization (%) on S6 handset
in E1. Separate utilisation is shown for encryption (red) and

hiding (green).

Figure 9 presents the results of encryption vs. hiding at
different accelerometer sampling rates. Note that 100% of
inclusive CPU time would indicate that the whole period
when the data hiding application is running its thread uses a
CPU. These results show that our software does not occupy
the CPU all the time, meaning that the CPU may set the
application thread into the wait state to save energy. We
also observe that the CPU was occupied more often with

data hiding rather than encryption, even though one call to
the data hiding function takes much less time than one call
to the encryption function (Figure 6). This disparity is due
to the fact that each record of data to be hidden is encrypted
once, but requires many calls to the data hiding function,
since only 1 or 2 bits can be hidden at a time. For instance,
a 32-bit payload is encrypted once but requires 32 calls to
the data hiding function when using 2 LSBs (1-bit payload
& 1-bit flag).

Figure 10. Maximal distortion of acceleration for different
LSBs and floating-point exponents. The y axis is in base-2

logarithmic scale.

Distortion
According to standards [17], to represent a floating-point
number v, the exponent value q in equation (1) must be
maximised with the constraint that 2q is not greater than |v|.
This means that the amount of error increases as the
maximal possible value of |v| is greater. According to the
measurement range of common smartphone accelerometer

[25], q is at most 8. Figure 10 depicts the maximal
distortion that we theoretically induce for different LSBs
and exponents. The number of LSBs (i.e., n) depends on the
experiment settings.

We contrast the theoretical prediction with empirical data of
the distortion in the carrier signal in E1 and E2 on the S6
handset. The handset was placed on the flat table so that the
z axis of accelerometer showed the gravity which was about
10m/s2, as meaning that a floating point number needs q=3
to represent this value.

In E1 (where 2 LSBs are used) we recorded 2.861×10-6m/s2
as the maximal absolute value of error in the carrier signal.
This result exactly matches our theoretical estimation which
is given by equation (2) when n=2 and q=3. Similarly, in E2
(when the number of LSBs was 3), we logged the maximal
absolute error 6.676×10-6m/s2. This also exactly matches
our theoretical estimation where equation (2) has n=3 and
q=3.

DISCUSSION

Performance
Our results show that smartphone sensor streams can
provide sufficiently high capacity for common data hiding
scenarios, especially when used with high frequency carrier
signals. Depending on the security concerns of smartphone
sensing systems, a variety of smartphone data types, such as
floating numbers (e.g., magnetometer and GPS), integers
(e.g., heart rate) and characters (e.g., human input text and
device ID code) can be a suitable payload hosted in the
carrier signal.

Indicatively, we measured on the S6 handset a maximum
capacity of 26.8B/s with a 1-axis accelerometer carrier
signal. Give the expected distortion shown in Figure 10, the
capacity for 7 LSBs on a 3-axis carrier signal is 526B/s,
with expected distortion between 10-5m/s2 and 4×10-3m/s2.
To extract this hidden data, a recipient requires knowledge
of:

• the data type of the host signal;

• the data type of hidden data;
• the number of LSBs used in the host signal;

• the host signal sorted by timestamp;

• the information for decryption (in the case of
AES/GCM, they are the nonce, the authentication
tag and the decryption key).

Beyond the confidentiality and integrity provided by
AES/GCM encryption, hiding data into another sensor
stream obscures the existence of sensitive and private data
secret by making it imperceptible. Thus, as Lane et al. [22]
have called for, using our approach the type and value of
sensitive data streams are not accessible or noticeable to a
third party, taking one step closer towards the preservation
of privacy. For example, an attacker may find it useful to
know that a user is uploading location data, even if they

cannot see the actual data. Our method alleviates this
concern by obscuring the existence of such sensitive data.
In practice, this means that sensitive data is not stored in a
separate database field (thus making it perceivable to third
parties). In addition, if the payload is an encrypted identity
code such as a device ID, it can be used to verify the
authenticity of the carrier signal source.

Implementation Issues
Our approach has a manageable computational cost (Figure
9), making it practical for smartphones [18] and allowing
power-efficiency OS techniques to reduce its energy
footprint, for example setting threads to sleep mode. In
addition, the theoretical predictions regarding the distortion
caused by our technique (Figure 10) have been empirically
confirmed, thus guaranteeing the level of fidelity between
the original carrier signal and the signal containing hidden
information.

This is important for a range of applications. Certain
applications that use accelerometer data require high
precision, such as gesture recognition [34], while other
applications like scrolling via tilting [5] require crude
precision since smartphone accelerometers and gyroscopes
produce measurement errors anyway [10]. Our method is
flexible enough to account for varying needs regarding the
fidelity of processed data, by trading off fidelity and
capacity.

Our approach can be adopted by existing sensing systems
that already support smartphone sensor data. In particular,
we envision that a user with multiple devices (e.g. phone,
tablet, smartwatch) would be able to transparently share
sensitive between those devices via existing platforms. As
long as each device has access to the sensor data, it is
possible to extract and decrypt hidden data on the client,
without allowing the platform to gain access, or even know
that the hidden data exists. This is possible without
modifying the platform itself, and not requiring additional
“encrypted” fields to be supported.

Medical Sensor Data
Due to its technical characteristics, our proposed data
hiding technique can help to address the legislation that
many countries have to protect sensitive data, especially
medical sensor data [4, 36]. In general, the development of
medical information systems has been a challenging and
costly affair for many countries [16] due to the complex
privacy requirements.

For instance, it is challenging to enable users to retain
control of their own data after it has been entered in the
system, and giving them access to this data is often a thorny
issue [2]. Our method enables users to retain control of their
sensitive data even after it has been uploaded on a
healthcare information system. For example, during
consultation a user could decrypt sensitive information
using the secrets stored in their personal device, and show it
to the doctor.

Crowdsensing
Additionally, our technique enables the verification of the
authenticity or owner of smartphone sensor data. This is
particularly relevant to mobile crowdsensing scenarios,
either user-driven [6] or agent-driven [24], with diverse
application including environmental monitoring and
intelligent transportation. In such settings, malicious users
or faulty systems can upload tampered or faked data to
damage the systems or to defraud benefits if the systems
offer rewards for uploading certain data. In this scenario,
our technique can offer crucial digital evidence for
forensics [28] to ensure the authenticity of smartphone
sensor data. For example, this can be achieved by
smartphone applications embedding an encrypted unique
identification number into every uploaded sensor data
stream. When the streams are received, their authenticity
can be established by inspecting the identification number.
If the received data stream does not contain the ID assigned
to a particular client, the systems can consider the data
invalid and ignore it.

Along the same lines, initiatives such as Crawdad and
Crowdsignals are building up large archives of sensor data.
Using our technique, it is possible for users to “physically”
embed in this data a unique signature that serves as proof of
ownership of the data, and can be used to confirm that no
tampering has taken place. The “physical” binding means
that even if this sensor data is shared between scientists via
email, database services, physical media, and across a
variety of file formats, the hidden data persists. This
property also ensures that it is “future proof”, in the sense
that if in the future new ways of sharing data is established,
the hidden data will remain available as proof of who owns
or generated this sensor stream.

LIMITATIONS AND FUTURE WORK
We have only verified our approach on 6 phones with
Android OS 5.0 or above, and we are aware that
approximately 65% of Android smartphones run a lower
version that 5.0 at time of writing. We expect our method’s
performance to vary across different handsets, but only in
terms of capacity and CPU load. The other features of our
method should remain invariant.

Clearly, our method has not been tested on other operating
systems, such as Symbian, iOS and Windows, and this
would be a crucial next step for our work. A key challenge
may be that the implementation of AES/GCM may be
unavailable on other handsets, meaning that an ad-hoc
algorithm may be needed. Although developers can employ
other encryption algorithms, this may downgrade the
performance and security level. Another technical issue is
that the computational efficiency in other handsets
environments can be significantly lower than Android 5.0,
meaning that they cannot use high-frequency sensor data as
the carrier signal.

In addition, we have not tested our method with a broad
range of external sensors or devices (such as smartwatches).

Platforms with higher constraints (such as smartwatches)
may find it challenging to attain high capacity data hiding.

During the selection of carrier signals, objectively
quantifying the sensitivity of each sensor can provide
greater robustness to the data hiding mechanism. This
requires a substantial body of future work. The positions of
sensors (i.e., their sensitivity) in Figure 1 may depend on
various factors, such as social context, network
environments and capabilities of attackers.

Our future work will also include a mechanism to balance
the tradeoff between capacity and fidelity in carrier signals.
A large number of LSBs leads to high capacity and low
fidelity in the carrier signals. Therefore, this mechanism
should adaptively identify a suitable upper bound of LSBs
in different types of data hiding scenarios.

CONCLUSION
We propose a data hiding method to embed sensitive
information into smartphone sensor data streams. Our
method combines encryption with data hiding, and can be
adopted by smartphone sensing systems to secure sensitive
data or to prove the authenticity of data. Due to the
imperceptibility of data hiding techniques, an
unauthenticated party does not notice the type and value of
hidden sensitive data stream by interception, thus
alleviating some of the privacy problems of smartphone
sensing systems mentioned in literature [22].

We evaluated with a variety of handsets, data types, and
settings. Our experimental results show that it is feasible to
encrypt and embed common types of smartphone data (e.g.,
magnetometer readings, heart rate, GPS location, human
input text and device identification code) into high-
frequency sensor streams, such as accelerometer, in real
time. Moreover, we show that AES/GCM encryption and
data hiding operations have manageable impact on the CPU
utilisation of the sensing application thread, meaning that
our approach will not be bottlenecked by resource-
constrained environments of smartphones. We demonstrate
that our approach is able to maintain high fidelity after data
hiding, and can provide strong guarantees regarding fidelity
by adjusting the number of LSBs used for hiding. Our
findings make this data hiding method attractive for
smartphones sensing systems that collect sensitive data or
require high data authenticity, such as medical systems and
digital forensics applications.

ACKNOWLEDGMENTS
This work is partially funded by Infotech Oulu, TEKES-
funded VitalSens project, the Academy of Finland (Grants
276786-AWARE, 285062-iCYCLE, 286386-CPDSS,
285459-iSCIENCE), and the European Commission
(Grants PCIG11-GA-2012-322138, 645706-GRAGE, and
6AIKA-A71143-AKAI).

REFERENCES
1. Gregory D. Abowd. 2012. What next, ubicomp?

Celebrating an intellectual disappearing act. In

Proceedings of the 2012 ACM Conference on
Ubiquitous Computing - UbiComp '12, 31-40.
http://dx.doi.org/10.1145/2370216.2370222.

2. Corey M. Angst and Ritu Agarwal. 2009. Adoption of
Electronic Health Records in the Presence of Privacy
Concerns: The Elaboration Likelihood Model and
Individual Persuasion. MIS Q. 33, 2: 339-370.

3. Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier
Parra and Jorge J. L. Reyes-Ortiz. 2013. A public
domain dataset for human activity recognition using
smartphones. In European Symposium on Artificial
Neural Networks, Computational Intelligence and
Machine Learning, ESANN.

4. David Blumenthal and Marilyn Tavenner. 2010. The
meaningful use regulation for electronic health records.
New England Journal of Medicine 363, 6: 501-504.

5. Sebastian Boring, Marko Jurmu and Andreas Butz.
2009. Scroll, Tilt or Move It: Using Mobile Phones to
Continuously Control Pointers on Large Public
Displays. In Proceedings of the 21st Annual
Conference of the Australian Computer-Human
Interaction Special Interest Group: Design: Open 24/7,
ACM, 161-168.
http://dx.doi.org/10.1145/1738826.1738853.

6. Yohan Chon, Nicholas D. Lane, Yunjong Kim, Feng
Zhao and Hojung Cha. 2013. Understanding the
Coverage and Scalability of Place-centric
Crowdsensing. In Proceedings of the 2013 ACM
International Joint Conference on Pervasive and
Ubiquitous Computing, ACM, 3-12.
http://dx.doi.org/10.1145/2493432.2493498.

7. G Coatrieux, L Lecornu, B Sankur and Ch Roux. 2006.
A Review of Image Watermarking Applications in
Healthcare. In Engineering in Medicine and Biology
Society, 2006. EMBS '06. 28th Annual International
Conference of the IEEE, IEEE, 4691-4694.
http://dx.doi.org/10.1109/IEMBS.2006.259305.

8. Christian Collberg and Jasvir Nagra. 2009.
Surreptitious Software: Obfuscation, Watermarking,
and Tamperproofing for Software Protection. Addison-
Wesley Professional.

9. John P. Collomosse and Tim Kindberg. 2008. Screen
Codes: Visual Hyperlinks for Displays. In Proceedings
of the 9th Workshop on Mobile Computing Systems and
Applications, ACM, 86-90.
http://dx.doi.org/10.1145/1411759.1411782.

10. Ionut Constandache, Xuan Bao, Martin Azizyan and
Romit R. R. Choudhury. 2010. Did You See Bob?:
Human Localization Using Mobile Phones. In
Proceedings of the Sixteenth Annual International
Conference on Mobile Computing and Networking,
ACM, 149-160.
http://dx.doi.org/10.1145/1859995.1860013.

11. Ingemar J. Cox, Joe Kilian, Tom Leighton and Talal
Shamoon. 1996. A secure, robust watermark for
multimedia. In Information Hiding (eds.). Springer
Berlin Heidelberg, 185-206.

12. Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica
Fridrich and Ton Kalker. 2008. Digital Watermarking
and Steganography. Morgan Kaufmann Publishers
Inc..

13. Stefan Dernbach, Barnan Das, Narayanan C. Krishnan,
Brian L. Thomas and Diane J. Cook. 2012. Simple and
Complex Activity Recognition through Smart Phones.
In International Conference on Intelligent
Environments, IEEE, 214-221.
http://dx.doi.org/10.1109/IE.2012.39.

14. Morris J. Dworkin. 2007. SP 800-38D.
Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC.

15. Frank Hartung and Martin Kutter. 1999. Multimedia
watermarking techniques. Proceedings of the IEEE 87,
7: 1079-1107. http://dx.doi.org/10.1109/5.771066.

16. Richard Heeks. 2006. Health information systems:
Failure, success and improvisation. International
Journal of Medical Informatics 75, 2: 125-137.
http://dx.doi.org/10.1016/j.ijmedinf.2005.07.024.

17. 2008. IEEE Standard for Floating-Point Arithmetic.
IEEE Std 754-2008: 1-70.
http://dx.doi.org/10.1109/IEEESTD.2008.4610935.

18. Hussam Juma, Ibrahim Kamel and Lami Kaya. 2008.
Watermarking sensor data for protecting the integrity.
In International Conference on Innovations in
Information Technology, IEEE, 598-602.
http://dx.doi.org/10.1109/INNOVATIONS.2008.47816
62.

19. Apu Kapadia, David Kotz and Nikos Triandopoulos.
2009. Opportunistic sensing: Security challenges for
the new paradigm. In Communication Systems and
Networks and Workshops, IEEE, 1-10.
http://dx.doi.org/10.1109/COMSNETS.2009.4808850.

20. Predrag Klasnja, Sunny Consolvo, Tanzeem
Choudhury, Richard Beckwith and Jeffrey Hightower.
2009. Exploring Privacy Concerns About Personal
Sensing. In Proceedings of the 7th International
Conference on Pervasive Computing, Springer-Verlag,
176-183. http://dx.doi.org/10.1007/978-3-642-01516-
8_13.

21. Vassilis Kostakos and Denzil Ferreira. 2015. The Rise
Of Ubiquitous Instrumentation. Frontiers in ICT 2, 3:
1-2. http://dx.doi.org/10.3389/fict.2015.00003.

22. Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel
Peebles, Tanzeem Choudhury and Andrew T.
Campbell. 2010. A Survey of Mobile Phone Sensing.
Communications Magazine, IEEE 48, 9: 140-150.
http://dx.doi.org/10.1109/MCOM.2010.5560598.

23. Reed Larson and Mihaly Csikszentmihalyi. 2014. The
Experience Sampling Method. Springer Netherlands.

24. Teemu Leppänen, José A. Lacasia, Yoshito Tobe,
Kaoru Sezaki and Jukka Riekki. 2015. Mobile
crowdsensing with mobile agents. Autonomous Agents
and Multi-Agent Systems: 1-35.
http://dx.doi.org/10.1007/s10458-015-9311-7.

25. LIS3DH MEMS digital output motion sensor ultra low-
power high performance 3-axes "nano" accelerometer.
http://www.st.com/web/en/resource/technical/documen
t/datasheet/CD00274221.pdf.

26. Cristina V. Lopes and Pedro M. Q. Aguiar. 2003.
Acoustic Modems for Ubiquitous Computing. IEEE
Pervasive Computing 2, 3: 62-71.
http://dx.doi.org/10.1109/MPRV.2003.1228528.

27. Nai Miao, Yutao He and Jane Dong. 2012. hymnMark:
Towards Efficient Digital Watermarking on Android
Smartphones. In Proceedings of the International
Conference on Wireless Networks (ICWN), 1-8.

28. Alexios Mylonas, Vasilis Meletiadis, Lilian Mitrou and
Dimitris Gritzalis. 2013. Smartphone sensor data as
digital evidence. Computers & Security 38: 51-75.
http://dx.doi.org/10.1016/j.cose.2013.03.007.

29. W. Pan, G. Coatrieux, J. Montagner, N. Cuppens, F.
Cuppens and C. Roux. 2009. Comparison of some
reversible watermarking methods in application to
medical images. In Engineering in Medicine and
Biology Society, 2009. EMBC 2009. Annual
International Conference of the IEEE, IEEE, 2172-
2175. http://dx.doi.org/10.1109/IEMBS.2009.5332425.

30. Jennifer Pearson, Simon Robinson, Matt Jones, Amit
Nanavati and Nitendra Rajput. 2013. ACQR: Acoustic
Quick Response Codes for Content Sharing on Low
End Phones with No Internet Connectivity. In
Proceedings of the 15th International Conference on
Human-computer Interaction with Mobile Devices and
Services, ACM, 308-317.
http://dx.doi.org/10.1145/2493190.2493195.

31. Yanzhi Ren, Yingying Chen, Mooi C. Chuah and Jie
Yang. 2015. User Verification Leveraging Gait
Recognition for Smartphone Enabled Mobile
Healthcare Systems. Mobile Computing, IEEE
Transactions on 14, 9: 1961-1974.
http://dx.doi.org/10.1109/TMC.2014.2365185.

32. Amit Sahai. 2004. Secure Protocols for Complex Tasks
in Complex Environments. In Progress in Cryptology -
INDOCRYPT 2004, Springer Berlin Heidelberg, 14-16.
http://dx.doi.org/10.1007/978-3-540-30556-9_2.

33. Frank Y. Shih. 2007. Digital Watermarking and
Steganography Fundamentals and Techniques. CRC
Press.

34. Boris Smus and Vassilis Kostakos. 2010. Running
gestures: hands-free interaction during physical
activity. In International Conference on Ubiquitous
Computing Adjunct, ACM, 433-434.
http://dx.doi.org/10.1145/1864431.1864473.

 35. Ryohei Suzuki, Daisuke Sakamoto and Takeo Igarashi.
2015. AnnoTone: Record-time Audio Watermarking
for Context-aware Video Editing. In Proceedings of the
33rd Annual ACM Conference on Human Factors in
Computing Systems, ACM, 57-66.
http://dx.doi.org/10.1145/2702123.2702358.

36. Astrid M. van Ginneken. 2002. The computerized
patient record: balancing effort and benefit.
International Journal of Medical Informatics 65, 2: 97-
119. http://dx.doi.org/10.1016/s1386-5056(02)00007-2.

37. R. Velumani and V. Seenivasagam. 2010. A reversible
blind medical image watermarking scheme for patient
identification, improved telediagnosis and tamper
detection with a facial image watermark. In IEEE
International Conference on Computational
Intelligence and Computing Research, IEEE, 1-8.
http://dx.doi.org/10.1109/ICCIC.2010.5705832.

38. Honggang Wang, Dongming Peng, Wei Wang, Hamid
Sharif and Hsiao-Hwa Chen. 2008. Energy-Aware
Adaptive Watermarking for Real-Time Image Delivery
in Wireless Sensor Networks. In International
Conference on Communications, IEEE, 1479-1483.
http://dx.doi.org/10.1109/ICC.2008.286.

39. Wei Zhang, Yonghe Liu, Sajal K. Das and Pradip De.
2008. Secure data aggregation in wireless sensor
networks: A watermark based authentication
supportive approach. Pervasive and Mobile Computing
4, 5: 658-680.
http://dx.doi.org/10.1016/j.pmcj.2008.05.005.

40. Wu Zhou, Xinwen Zhang and Xuxian Jiang. 2013.
AppInk: Watermarking Android Apps for Repackaging
Deterrence. In Proceedings of the 8th ACM SIGSAC
Symposium on Information, Computer and
Communications Security, ACM, 1-12.
http://dx.doi.org/10.1145/2484313.2484315.

