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ABSTRACT  
Near Infrared Spectroscopy (NIRS) is a sensing technique in 
which near infrared light is transmitted into a sample, 
followed by light absorbance measurements at various 
wavelengths. This technique enables the inference of the 
inner chemical composition of the scanned sample, and 
therefore can be used to identify or classify objects. In this 
paper, we describe how to facilitate the use of NIRS by non-
expert users in everyday settings. Our work highlights the 
key challenges of placing NIRS devices in the hands of non-
experts. We develop a system to mitigate these challenges, 
and evaluate it in a user study. We show how NIRS 
technology can be successfully utilised by untrained users in 
an unsupervised manner through a special enclosure and an 
accompanying smartphone app. Finally, we discuss potential 
future developments of commoditised NIRS. 
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INTRODUCTION  
As can been seen in consumer electronics, sophisticated 
hardware is becoming cheaper and more accessible to the 
modern customer (e.g., smartphones), this includes Near 
Infrared Spectroscopy (NIRS) scanners. NIRS has the ability 
to penetrate the surface and traverse the physical structure of 
an object. It allows for the retrieval of information about the 
inner composition of a sample in the form of a spectrum, 
which acts as a proverbial fingerprint [48] of the sample. 
Thus, it enables accurate and detailed object identification. 

While NIRS scanners have been used in research laboratories 
for decades [38], only recently has the technology matured 

enough to allow for end-user hardware which is both small 
and robust enough to be carried around, while still capable 
of producing reliable results. The NIRS device used in our 
study (DLP NIRscan Nano [15]) costs under 1000 US dollars 
at the time of writing and weighs just 80 grams – a fraction 
of the price and weight of high-end NIRS hardware. These 
numbers can be expected to continue to decline, which in 
turn encourages researchers to start considering everyday 
scenarios for this technology. For the first time, we argue, it 
can plausibly be placed in the hands of consumers. The main 
objective of our work is to explore the improvement of the 
accessibility of these devices for non-experts. 

Coupling NIRS hardware with commodity devices (e.g., 
tablets, smartphones) opens a range of exciting research 
avenues to explore. An in situ scanner placed at supermarkets 
could enable classification of products while they are being 
weighted, and report to the users the current state of the 
product (e.g., the level of ripeness of a fruit [45]). In a home 
scenario, augmented shelves can detect the food being 
stored, and even determine if it has gone bad [3]. In a 
domiciliary health scenario, a user can scan a pill or medicine 
to confirm that this pill is the correct one to take at that 
moment [9]. There are a vast number of potential use cases 
for an everyday device that can identify objects based on 
their physical composition and ingredients.  

The contribution of our work is three-fold. First, we explore 
the challenges in obtaining reliable scanning results, namely 
the impact of user-induced errors on scan accuracy. This is 
an unexplored territory in the context of miniaturised NIRS 
scanning. Second, we map the complexity and required 
knowledge to carry out a full sample analysis [27]. Third, we 
design and evaluate a set of mechanisms to address these 
issues and make NIRS more accessible and usable to non-
experts. Our design consists of a custom enclosure to 
physically guide the user in the scanning process, and a 
mobile application to assist the user, inform of scanning 
errors during usage, and encapsulate the sample analysis 
process. We evaluate our design in a user study to collect 
feedback and ideas for future improvements. Our findings 
show that non-experts can successfully use this technology 
when both physical and procedural guides are in place. 

RELATED  WORK  

Making  Sensors  Accessible  
Sensors play an increasingly larger role in consumer 
electronics. Today, consumers’ personal devices are 
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embedded with a plethora of different hardware sensors, 
such as accelerometer, gravity, gyroscope, light, and 
magnetic [47]. Beyond providing benefits to the users 
themselves, these sensors have proven to be valuable tools 
when conducting research in fields such as traffic 
management [5], HCI [41], localisation [10], and healthcare 
[32]. While these electronic components are now 
commoditised and embedded as an integral part in a variety 
of products, they were originally much larger standalone 
devices. For example, the first accelerometer weighted 
almost 0.5 kg and measured 1.90 x 4.76 x 21.59 cm in size 
[53]. The size, weight, and cost of the accelerometer was 
eventually reduced, while the use cases expanded [53]. 
Initially, the accelerometer was used mostly in industry, but 
now benefits end-users with service enhancement in 
numerous applications. Further, smart devices do not only 
serve as a host for embedded sensors, but frequently act as 
control points for smaller and mobile sensors. This, 
combined with the widespread nature of smartphones [42], 
allows for innovative services. For instance, smartphones 
can be connected to portable medical devices (e.g., blood 
pressure, glucose, and pulse oximeter) to process, analyse, 
and present biohealth data [22,31]. It is increasingly feasible 
for end-users to self-monitor their health, without the need 
for trained healthcare personnel. In essence, the development 
of these sensors and their increased accessibility help bridge 
the gap between end-users and advanced medical equipment. 

In another example, Samsung’s Galaxy Note 7 includes an 
infrared iris sensor, which allows biometric authentication on 
consumers’ devices for security and access control [43]. 
Similarly, while until recently only a few devices came with 
fingerprint sensors [19], this technology has become 
increasingly more accessible for end-users. Goel et al. [20] 
showcase how a hyperspectral sensor, previously used for 
research, can assist in a wider set of use cases. Using 
functional Near-Infrared Spectroscopy (fNIRS) for Brain–
Computer Interfaces (BCI) has begun to proliferate in the 
HCI community [30,33,40,51]. Strait et al. [52] investigate 
the reliability of fNIRS in BCI through a user study, and 
highlight some of the obstacles. Yuksel et al. [54] develop a 
system that automatically adjusts musical learning tasks 
based on the user’s cognitive workload measured by fNIRS. 
In our work, we take initial usability steps towards 
facilitating the use of NIRS scanners by non-experts and by 
using smartphones as a control point.  

Near  Infrared  Spectroscopy  
NIRS sends near infrared light into a sample and measures 
the absorbance at various wavelengths, thus allowing for 
object identification [7]. Because of the characteristics of the 
NIR band (780 nm to 2500 nm), it can penetrate objects up 
to several millimetres. This enables quick and accurate 
analysis of the inner composition of samples (e.g., analysing 
if a food product contains gluten), something that cannot be 
attained using computer vision. NIRS has been shown to be 
a useful technique in research across many different fields 
[16,17,49]. One of the more popular use cases of NIRS is to 

verify the quality of food. Sinelli et al. [49] used NIRS to 
analyse the freshness of minced beef. By comparing scans 
taken at different times, they were able to accurately 
determine the expiry date of the product. Others have 
explored NIRS as a way of developing a non-destructive 
solution for analysing fruit quality [28]. NIRS methods can 
reveal information about the inside of the fruit, something 
impossible to achieve solely through visual inspection. The 
reflected spectra contain the information used to infer the 
fruit’s maturity, pH factor, solid content, and flesh elasticity. 
Another distinct feature of NIRS is the possibility to scan an 
item with no manipulation or pre-treatment applied to the 
object itself [6]. For this reason, NIRS has also gained 
popularity in the pharmaceutical industry [4]. This industry 
is heavily regulated, with a need for fast and safe quality 
control. NIRS can also help to address the challenge of 
counterfeit drugs. It is estimated that around 7% of the 
pharmaceuticals sold in the world are fake [13]. These 
counterfeit drugs are typically defined as drugs that have 
active substances which have been modified [13]. Similarly, 
in textile industries there is a need to verify the fibres of 
clothes at different stages in the production and recycling. 
However, many of the current methods for textile 
classification are both time consuming and involve 
dangerous chemicals. Cleve et al. [12] report how they 
accurately identified fabrics using NIRS. Durand et al. [16] 
argue that NIRS can replace existing methods and report an 
identification accuracy of over 96% for textiles. The 
aforementioned use cases (i.e., food, pharmaceutical, textile) 
provide realistic real-world usage scenarios and are suitable 
for testing in a miniaturised NIRS context. 

Miniaturised  Near  Infrared  Spectroscopy  
Most of the previous examples rely on heavy desktop NIRS 
equipment or larger portable devices. Given their success, 
miniaturised versions for field use have recently been 
developed. For instance, a mobile NIRS device has been 
used to detect tomato’s pathogen [1]. By scanning the fruit 
just before it is harvested, it is possible to avoid large losses 
of fruit being rejected in quality control. Instead of sending 
the sample to a lab and waiting for a report, results can be 
obtained in situ in a matter of seconds. Unlike many of the 
current in situ chemical approaches, NIRS is also a non-
destructive method. However, farmers reported that they 
considered the equipment to be both too expensive and too 
difficult to use [13]. 

Recently, cheaper and smaller devices have entered the 
market. However, there is a lack of research that investigates 
the effects of user-noise and usability when the device is 
placed in the hands of non-expert. Specifically, the effect of 
device motion [26], sample distance [46], sample angle [35], 
sample surface [36], sample interference [56], and ambience 
[50] have not been tested in the context of end-user 
miniaturised NIRS usage. Therefore, in this paper we 
investigate the effect of these parameters and consider ways 
to overcome the challenges they may impose. Furthermore, 
we propose a non-expert assistance for end users.  



CHALLENGES  OF  NIRS  SCANNING  
There are two main challenges that users face when utilising 
NIRS technologies: 1) the impact of user-induced errors on 
the reliability of the results, and 2) the complexity of the 
sample analysis process. The effect of the former is 
exacerbated when NIRS devices are placed in the hands of 
non-experts. The latter is a challenge pertaining to 
commoditising this technology, since we expect that 
everyday users lack the skills to extract, analyse, and 
interpret the output generated by the device. Next, we 
describe in detail the impact of both these challenges on the 
reliability of the results. 

Challenge  1  –  User-Induced  Errors  
We experimentally investigate the limitations of NIRS 
technology in terms of user-induced errors in a scanning 
scenario with everyday materials. When a user interacts with 
the device (e.g., place an object, hold the device), the user 
may introduce some noise to the system that can degrade 
scan accuracy. This could for example be caused by 
improper sample placement or an (unintended) shaking 
motion. To support non-expert NIRS usage, we have to 
identify the magnitude of the various types of user-induced 
errors. Moreover, based on the data from these test, we can 
inform the design of our non-expert assistance. 

To showcase the impact of each type of user-induced error, 
we chose three different sample types (fruit, pharmaceutical, 
textile) with varying characteristics, as shown in Table 1. In 
some cases, we used different items from the same sample 
type for a more appropriate evaluation of each parameter. For 
example, when testing sample surface, it would not make 
sense to test a round object with no edges or varying texture. 
A NIRS scan was deemed inadequate when it produced 
values that are significantly different from the values 
obtained under ideal conditions (significance tested through 
Wilcoxon signed-rank tests). 

Sample Properties Test(s) 
100% Cotton Area (Square): 196 cm 

Height: 2,5 cm 
1 - 6 

Omega 3 Brand: Möller 
Weight: 1200 mg 

2, 5, 6 

Multivitamin Plus M Brand: Orion Pharma 
Weight: 250 mg 

1, 3, 4 

Banana  Uncut 
Diameter: 20 cm 
Weight: 120 g 

1 - 5 

Apple Uncut 
Diameter: 6 cm 
Weight: 80 g 

5, 6 

Grape Uncut 
Diameter: 2 cm 
Weight: 5 g 

5 

Table 1. Selected samples, properties, and respective tests. 

Scan  setup  and  configuration  
Our scan setup consists of a NIRS scanner (DLP NIRscan 
Nano [15]) and a camera tripod. We use a custom-built 
aluminium plate and the tripod’s spirit level to align the 
scanner with the scanned object. We use a separate spirit 
level to ensure both an overall alignment and the incident 
beam hitting the sample orthogonally. Figure 1 depicts the 
scan setup. Our scan setup was installed in a room with 
controlled light conditions, and a lux meter was used to 
detect the amount of light visible in the room. The lux meter 
detects wavelengths within the visible light range (400-
700nm). Fluorescent lamps, such as the ones in our testing 
room, mainly radiate within the same spectra [18]. 
Therefore, the level of stray light interference can be 
measured by the lux meter.  

The DLP NIRscan Nano software allows the user to 
configure and calibrate the device before starting a scan. A 
reference scan was set using a labsphere Spectralon Diffuse 
Reflectance Standard. This calibration tool reflects up to 
99% of incoming light, allowing the machine to adjust to 
changing hardware performance. The configuration during 
all experiments used the whole available NIRS wavelength 
range (900-1700nm). The resolution of the hardware 
describes the smallest spectral features that it is able to 
detect. In our case the hardware has an optical resolution of 
10nm. The digital resolution can be increased at the cost of 
decreasing the Signal-to-Noise Ratio (SNR). The lowest 
setting with the manufacturer’s software is 7.02nm without 
receiving warnings about degrading performance. Therefore 
this setting was chosen as literature suggests that a higher 
resolution helps to detect all spectral features [12,21,37]. The 
manufacturer ships the device with four typical scan 
configurations [15]. For a digital resolution of 7.02nm, it is 
suggested that the spectra should be sampled approximately 
228 times, meaning that it will be oversampled by 2 to satisfy 
the Nyquist-Shannon Sampling Theorem [8].  

 
Figure 1. Left: Scanning platform with the DLP NIRscan 

Nano mounted and the lux meter. Right: DLP NIRscan Nano. 

Specifically, the spectral bandwidth being sampled is 800nm 
(i.e., 1700nm-900nm). With a digital resolution of 7.02nm, 
we need 114 (i.e., 800nm / 7.02nm) patterns to sample the 
whole spectra. A common way to increase the SNR while 
sampling is by signal averaging [23]. We scan each object 
six times, as advised by the manufacturer. Each sample is 
recorded in the same manner, and all are averaged to increase 
the SNR. Each data point in Figure 2 – 7 represents the 
average mean absorbance of six individual scans. 



There are two available scan methods for the device, which 
determine how the wavelengths are scanned: Hadamard scan 
and Column scan. Hadamard multiplexes several 
wavelengths together and decodes individual wavelengths. 
Noise in the incident signal is distributed evenly over the 
spectrum to minimize the effect. This method also collects 
more light and provides a greater SNR than the Column scan 
[15], and was therefore chosen for our study. 
Test  1:  Device  Motion  
The device could be used either as a handheld point and scan 
device (e.g., baggage scanner) or as a stationary device (i.e., 
mobile, but placed on a table when scanning). We 
investigated the effect of device motion on scan quality. If 
even small movements from events such as hand tremor 
cause inadequate scans, then the latter positioning technique 
would be the best solution when using these devices. 

Movement of the NIRS while scanning can cause the lens 
window to lose contact with the sample. This may lead to 
unwanted reflections, distortion of the signal, and exposure 
to ambient light [26]. To explore the effect of device motion 
on scan accuracy, we scan each sample while the device is 
under three different levels of motion. First, we scan the 
sample with the device placed on the table. Second, we scan 
the sample while holding the device (i.e., light movement). 
Lastly, we conduct scans with moderate motion to reflect 
careless usage. 

 
Figure 2. Mean absorbance of objects with different levels of 

device motion. 

Figure 2 shows how the quality of the scans degrades when 
motion is applied to the NIRS when scanning. The 
absorbance also increases for both the 100% cotton and the 
banana sample, meaning less light is reflected. The 
multivitamin experiences a decrease in absorbance, likely 
caused by an increase in the lens exposure to ambient light. 
Test  2:  Sample  Distance  
Device positioning depends on the sample distance range for 
which it can deliver adequate results. Typically, lower ranges 
yield more accurate results, and in such cases the scanner 
should ideally be positioned upwards to enforce that the 
samples are directly on top of the lens window. However, a 
larger range would facilitate a more flexible design. The two 
lens-end broadband tungsten filament lamps in the NIRS 
hardware emit light through the device’s sapphire window. 
Both the light source paths and the vision cone of the 

receiving lens intersect directly in front of the window. The 
further away the sample is positioned, the less light the 
system is able to collect because of path loss [44]. In 
addition, the reflected signal contains less information and is 
more prone to noise. NIRS scanners assume that all light 
which is not reflected has been absorbed, even though it may 
have radiated through or around the object. While different 
objects absorb at varying rate, lower absorbance (i.e., a 
higher reflectance) often indicates that the object is closer 
and more ideally positioned. In addition, a sample positioned 
at close range will ensure less stray light entering the 
spectrometer, thereby increasing accuracy [46].  

To test the accuracy of our scans over different distances, we 
attached a ruler to the table. Each sample was then measured 
from 0cm to 3cm with increments of 1mm. The effect of the 
distance on the absorbance is shown in Figure 3. All of the 
curves display a similar characteristic, with the main 
difference seen in the level of object absorbance (dependent 
on the chemical composition of the sample). We can see that 
pure cotton reflects back more light back than the omega-3 
sample. This is because the omega-3 is transparent, with the 
majority of incoming light being scattered in multiple 
directions. 

 
Figure 3. Mean absorbance of objects over different distances 

to the scanner 

Test  3:  Sample  Angle  
To design an appropriate sample holder for the hardware, we 
identify the sample angle range in which the device delivers 
adequate result. The holder needs to hold the sample flat 
down if the range is limited. With adequate results in a larger 
range, the design could be more universal with less focus on 
holding the sample in a certain angle. 

For scans to be of high quality, the scanner needs to collect 
as much of the reflected light as possible. Ideally, the 
incident wave should hit a flat surface with an angle of 0°, 
following the law of reflection [35]. To measure the effects 
of scanning an item at various angles, we scan samples from 
0° to 90° with increments of 15°. Figure 4 shows the effect 
of object angle on absorbance levels. For every increment of 
15°, the quality deteriorates rapidly. While 0° is the optimal 
angle to retain all the spectral properties, small items (e.g., 
multivitamins) reflect an adequate amount of light up to 15° 
(as shown in Figure 4) because of the illumination angle of 
the device. 



 
Figure 4. Mean absorbance of objects over different scanning 

angles. 

Test  4:  Sample  Surface  
The sample may have a surface with varying texture. It is 
crucial to know if the different textures will affect the scan 
accuracy. If the texture degrades scan accuracy significantly, 
the non-expert user should be instructed on how to correctly 
place the item to scan the most appropriate surface. A flat 
surface can reflect the signal in one direction, whereas a 
rough surface may cause signal scattering [36]. To 
investigate the consequences of scanning at various areas, we 
scanned the same samples from 3 reference points and 3 
uneven surfaces. The reference scans are taken at 0mm 
distance and at a 0° angle at a flat surface covering most of 
the lens. The uneven surfaces consist of parts of the object 
that have edges or are rugged. 

In Figure 5, we can observe that all the reference scans are 
of adequate quality and have little variance between them. In 
contrast, just one out of the nine uneven samples is of 
adequate quality. The uneven cotton samples also have a 
large variance compared to the rest. Since the cotton samples 
were placed unfolded in front of the lens, they had a varying 
thickness when we were scanning the three uneven samples.  

 
Figure 5. Mean absorbance of objects with different surface 

evenness 
Test  5:  Sample  Interference  
When scanning a sample, nearby objects may be a source of 
interference. If the magnitude of this noise causes inadequate 
scans, then the user should be instructed on correct scan 
behaviour (i.e., only scan one sample at a time). Furthermore, 
this may also further encourage a stationary design, where 
the object is placed on a sample holder. The ratio of the NIRS 
waves that is reflected, absorbed, or passed through the 
scanned object depends on the object characteristics. Fruits 
[29], textiles [56], and pharmaceuticals [11] all have 

different penetration properties. Furthermore, a secondary 
object placed directly behind the sample might also reflect 
some light and affect the resulting spectra. To inspect the 
effects of this potential source of interference, we placed one 
object to be scanned in an ideal position while a secondary 
object was positioned directly behind the scanned object, 
moving up to 5cm away from the primary object at 
increments of 2mm. 

Figure 6 shows how the distance of a secondary object to the 
scanned object can affect the quality of the signal. For the 
first and second graph, there was only one instance of 
interference when the secondary object (i.e., apple, banana) 
was placed directly behind the sample (i.e., cotton, grape). 
Finally, the level of interference from cotton on the omega-3 
decreased in magnitude from 0mm to 37mm. This is because 
the omega-3 is transparent and therefore light is transmitted 
through the object and hits the cotton. It is then reflected back 
to the lens, causing the resulting spectra to be distorted. 

 
Figure 6. Mean absorbance of objects over different distances 

of interfering objects to the main object 
Test  6:  Ambience  
The user may add noise to the spectrum by conducting scans 
with the NIRS in a context with unsuitable levels of ambient 
light, humidity, or temperature. We focus on light, as 
humidity and temperature’s effect on the NIR spectra is 
limited in non-extreme climates [55]. The user should be 
instructed through the interface if the ambient light can cause 
the scan quality to drop significantly. 

Radiation from nearby light sources can affect the accuracy 
of the NIRS [50]. The level of interference depends on the 
magnitude of the illuminance and the distance between 
scanner and sample. We use a 120W halogen lamp as an 
interference source and a lux meter to measure its 
illuminance. As the halogen lamp transmits on wavelengths 
beyond the lux meter’s range, not all the light was detected. 
However, we still obtained a good indication of the 
illuminance level. We measured the effect of five different 
lux levels: 500 (bright office), 800, 1200 (daylight), 1600, 
and 2000 lux (shop window) [14]. The measurements were 
taken at four distances: 0, 10, 20, and 30mm. The effect of 
increased illuminance on SNR can be observed in Figure 7. 
The graphs are divided into bins. Samples in the same bin 
were taken at equal distance. Cotton and apple were 
unaffected by higher amounts of lux at 0mm range, while 
cotton showed varying results at 10, 20, and 30mm. For the 



apple, the scan contained substantial noise when increasing 
the lux beyond 0mm range. Omega-3 was affected more by 
stray light than the other two samples. Readings became 
noisy when the measured lux was above 500. This was 
expected as omega-3 is transparent and the interfering light 
can easily penetrate and cause noise.  

 
Figure 7. Mean absorbance of objects over different lux levels 

Challenge  2  -  Complexity  of  the  Sampling  Process  
In addition to the challenges associated with user-induced 
errors when using NIRS, interaction with the scanning 
device is another important aspect. To facilitate novice end-
user interaction with NIRS, a graphical user interface is 
required [27]. Figure 8 shows a procedural overview of the 
steps a user has to complete when using a NIRS device. The 
first two columns contain the steps and their respective 
descriptions. The third column indicates whether a user has 
to conduct that step when using a default NIRS device. 

 
Figure 8. Necessary steps a user needs to complete with a 

typical NIRS device. Adapted from [26]. 

First, users have to operate the instrument through typically 
complex software (and sometimes hardware) operations. 
Current NIRS systems require users to configure the device, 
set scan parameters, and navigate complex menus. Following 
these steps, the user also has to handle information produced 
by the device. A major challenge for non-experts is that data 
is usually returned in a raw format, not revealing much 
information to the end user. To extract the data and turn it 
into understandable knowledge, analysis methods (i.e., 
chemometrics) have to be applied to the dataset. This 
involves pre-processing the data when needed, and using 
multivariate analysis to classify the information [34]. 

Furthermore, a reference library is required to serve as 
training data for the classification model. The whole process 
hinders non-experts without strong analytical capabilities to 
interpret the information produced by the instrument. 
Consequently, training and education is a prerequisite for 
personnel wanting to utilise this technology in its present 
state. Our work is a step towards a future where users are not 
required to perform complex steps that require specific skills. 

NON-EXPERT  ASSISTANCE  
To overcome the challenges related to scanning and 
identifying samples, we adopt a combined hardware-
software approach. We address potential user-induced errors 
and the procedural complexities through a 3D printed 
enclosure and by guiding the user through a smartphone 
application capable of automating the required analysis.  
Physical  Assistance:  Enclosure  
We designed a 3D printed enclosure to both protect the 
scanner, reduce the effect of user-induced errors, and 
facilitate the scanning process. The design of our enclosure 
is informed by the findings of our tests. The design consists 
of a modular approach (protective casing and two different 
sample holders), which can be replaced by the user. The 
sample holders are distinctive in both shape and size to allow 
for different types of objects to be scanned. Figure 9 shows 
the final iteration of the enclosure and sample holders. 

 
Figure 9. Enclosure and sample holders. The smaller sample 

holder contains two walls for small samples to be held in place. 
The enclosure is formed to be positioned on the table, which 
removes the chance for device motion noise during 
operation. It is also pointing upwards, guaranteeing that 
object placement is within close proximity of the lens. This 
increases the accuracy as discovered in the sample distance 
test. Furthermore, it also the reduces the interference from 
ambient light, as the object is now covering the lens. The 
holder ensures that items are by default positioned at an even 
sample angle. In addition, our design prevents users from 
accidentally placing another object behind the scanned 
object, affecting the scan results (sample interference). Two 
arrows were placed on each platform to guide the user as to 
where the sample should be positioned. 

The larger sample holder has a dimension of 20 x 20 cm. The 
considerable surface area enables comfortable placement of 
samples, without concern for the sample falling off. The 
smaller sample holder consists of two small walls placed at 
an incline, allowing for small samples to be held securely in 
place. This addition can be seen more in detail in Figure 12. 
The walls are covered using insulating tape with IR 
absorbing characteristics, to reduce light scattering and to 



shield from interference caused by any nearby objects. The 
base of the walls are positioned at the edge of the lens, so that 
any item positioned between the walls is covering the lens. 
The final setup as described above is the result of three 
iterations of design, 3D printing, and testing. 
Procedural  Assistance:  Software  
We developed a smartphone application to allow end-users 
to interact with the NIRS device. The application provides a 
single interaction point. Furthermore, it provides the user 
with instructions and warnings regarding scan quality issues 
in order to reduce the effect of user-induced errors. The 
software also automates and encapsulates all the complex 
analysis stages, thus reducing the burden for the user. Figure 
10 displays the various screens of the application.  

 
Figure 10. Top row from left: Initial screen, settings, example 
of scanning instructions. Bottom row from left: Example of 
sample identification result, example of scan result warning 
about the presence of a component, example of scan result 

regarding the absence of a component. 

The home screen allows users to adjust the settings or start a 
new scan. In the settings screen, the user selects the type of 
sample that will be scanned. Instead of having to adjust a 
long list of parameters for the scan, the user can choose a pre-
determined category. Based on this configuration, the scan 
screens will adjust to show the relevant instructions, guiding 
the user in correctly scanning the sample. For example, the 
text instructs the user to position an even surface down and 
only scan one sample at a time. These guidelines were based 
on our tests investigating user-induced errors. After a scan is 
completed, the application displays the results. We utilise the 
built-in lux sensor of the phone to infer the level of 
illuminance in the area. Lux is measured in luminous flux per 
square metre, so while the phone and sensor are not in the 
exact same position, it can still be used as a baseline for how 
much light is reaching the NIRS. The lux measurement (top 
right corner of scan screen) changes from green, to yellow, 
to red, depending on the level of illuminance based on our 
ambient light tests.  

When the user presses the scan button, the button becomes 
disabled and a progress bar appears together with a text field 
describing the stage (i.e., scanning, analysis, or processing). 
The whole process takes around 20 seconds (approximately 
10 seconds for scan, 5 seconds for analysis, and 5 seconds 
for processing) to complete. Upon completion, the 
application will display the results and also vocalise the 
results using text-to-speech. The current version of the 
application has the ability to identify pharmaceuticals and 
detect whether a bread contains gluten. While the application 
could be implemented for a vast number of scenarios, we 
focus on the two aforementioned scenarios in our user study. 

Communication (e.g., starting a scan, receiving scan results) 
between the smartphone and the NIRS device occurs over 
Bluetooth Low Energy. When the application receives the 
scan results, they are sent to a server for processing (e.g., 
filtering, classification, regression). After the sample is 
analysed, the results are sent back to the smartphone and 
presented to the user. In addition, there are four scenarios in 
which the application will display a warning message to the 
user. While the warnings are active (10s), the scan button is 
greyed out and disabled. This is to ensure that the user reads 
it and does not accidently press the scan button again. After 
ten seconds, the button becomes active again. Warnings are 
intended to correct scan behaviour and limit the effect of 
user-induced errors, and are displayed in Figure 11. The 
thresholds for triggering these warnings were informed by 
the user-induced errors tests. 

 
Figure 11. Warnings 1 - 4 from top left to bottom right.  

Warning 1. If insufficient light is reflected back to the 
receiver, this is interpreted by the software as the object 
being misplaced. 



Warning 2. If substantial noise is detected in the resulting 
spectra, this can be caused either by object transparency or 
uneven surfaces. 
Warning 3. When the illuminance is larger than 800 lux, the 
text turns yellow and the user will be informed that the 
accuracy of the scans might be inaccurate. 
Warning 4. When the illuminance is larger than 1200 lux, 
the text turns red and scanning is temporarily disabled until 
the user can find a darker location. 
Evaluation  
To evaluate our proposed software and physical guides, we 
conducted a user study with participants who had no prior 
experience with NIRS technology. The main goal was to 
investigate whether non-experts are able to successfully 
conduct the scanning procedure without training. We 
investigated how people interact with the technology through 
a scanning experiment, and conducted a semi-structured 
interview to capture their opinions and feedback. Thus, our 
objective here is to explore the practical usability and 
perceived usefulness of the developed solution.  
Participants  and  Procedure  
We recruited 15 people using mailing lists of our university 
(9 males, 6 females; ages: 20-34 years old, M=26.6). 
Participants had a diverse range of educational backgrounds 
(e.g., Finance, Biology, Anthropology, and Computer 
Science). We carried out the experiments with each 
participant individually. The experiment duration was 
approximately 30 minutes per participant. Participants were 
rewarded for their participation with a movie voucher. After 
a short introduction to the experiment, participants were 
asked to scan a set of objects placed on the table before them 
using the NIRS scanner within the enclosure and a provided 
mobile phone running our application. The study was 
divided in two parts: 1) sample identification using 10 
different pharmaceuticals, and 2) gluten detection using 10 
pieces of bread. Both parts had items with varying 
characteristics (e.g., shape, size, texture, and transparency) 
to thoroughly test our non-expert assistance. We 
counterbalanced the scanning order. 

Participants did not receive any instructions on how to use 
the devices, as we wanted to assess the usability of our 
proposed solution in a realistic setting (e.g., the user would 
encounter this device in a supermarket without additional 
guidance from the staff). The participants were asked to 
report the scan results to the observing researcher. During the 
experiment, we recorded the participants’ answers and how 
they interacted with the non-expert assistance, as well as any 
comments from the participants while they scanned the 
objects. In addition, we also recorded any warning messages 
that were displayed by the application, for which object this 
warning message was displayed, and the user’s reaction. 
After all scans were completed, we conducted a semi-
structured interview in which we asked participants to 
comment on the application (e.g., usage, instructions, 
warnings, results), the enclosure, and the technology in 
general. The interview was structured as follows. 

Age, gender, occupation, background. 
Statements ranked on a 5-point Likert scale.  

–   The scan time was acceptable. 
–   The instructions/warnings/results (asked individually) were 

easy to understand.  
–   The instructions/warnings (asked individually) had enough 

details. 
–   It was easy to understand where to place the object.  
–   It was easy to place the object in the correct position.  
–   I felt comfortable when I used the device.  
–   I would trust this type of technology.  
–   I can see myself using this technology daily. 

Open-ended questions. 
–   What is your overall experience using our solution? 
–   Did you have any issues understanding how to use the 

application? 
–   Did you make any adjustments when you received the 

warnings? 
–   What steps would you take upon receiving a warning? 
–   What is your impression of the accuracy of the device? 
–   What type of information would you like to receive with the 

result? 
–   What features did you like on the enclosure? 
–   What features did you not like on the enclosure? 
–   What features would you change on the enclosure? 
–   What would you scan with a device like this? 

Since not all the warnings were shown during the scans, we 
printed them on paper and showed them individually during 
the interview in order to collect feedback. We asked 
participants to envision receiving the warnings and 
describing their subsequent actions. In addition, we asked the 
participants what additional information they would like to 
receive in scenarios besides the two we presented. The main 
focus of the study was to investigate whether novice end-
users would be able to successfully utilise a NIRS device 
using our design. We were also interested in collecting 
opinions on our design and the technology in general. 

 
Figure 12. Left: Object placement on small sample holder. 

Right: Participant during the user study. 

Results  

Perceptions  
The majority of participants (N=14) immediately understood 
the instructions and started using the application with no 
notable problems. One participant (P07) tried scanning the 
object by holding the phone towards it instead of placing the 
object on the platform. The participant quickly corrected his 
behaviour and explained that the confusion was due to 
having used several applications that rely on the camera. 
Participants strongly agreed that the instructions were easy 



to understand (M = 4.53, SD = 1.06), and also agreed that the 
instructions they were provided with by the smartphone were 
of sufficient detail (M = 4.40, SD = 0.91). Some participants 
commented that the instructions could be presented in a 
stepwise fashion, allowing for a more legible presentation: “I 
would like stepwise instructions, where you swipe to show 
the next instructions. It would allow for bigger pictures and 
text.” (P09). None of the participants reported having any 
issues with using the application and generally agreed that 
the scan time was acceptable (M = 3.80, SD = 0.68). Context 
was also deemed an important factor: “A user in the 
supermarket would not be able to wait that long” (P01). 
Warnings  
A few warnings were caused by participants pressing the 
scan button before positioning the sample, triggering 
Warning 1. In these cases, the users quickly recovered. There 
were also events in which transparent samples (omega-3) 
generated Warning 2. We showed each individual warning 
to the participants, and they generally agreed that they were 
understandable (M = 4.34, SD = 0.80) and contained enough 
details (M = 4.41, SD = 0.85). P04, P09, P11, and P12 
commented that the icon for Warning 2 did not correlate with 
the text in the warning. “The icon in Warning 2 does not 
indicate transparency” (P04). P05 recommended more 
visual instructions, instead of text. P06 requested more 
information about the lux range and more distinct difference 
for the icons in warning 3 and 4. Regarding the actions they 
would take upon receiving a warning, the answers were in 
line with the steps we envisioned a user would take (e.g., 
reposition object, place flat surface down, shade the machine 
from interfering light, or move to a darker area). 
Scan  Presentation  
Participants strongly agreed that the results were easy to 
understand (M = 4.87, SD = 0.35). When questioned about 
what additional information participants would like to have 
included with the results, most answers were related to more 
nutritional information (e.g., protein, carbohydrates, fats, 
sugar) but also other allergens (lactose). We received 
positive comments for the pharmaceutical results, such as “I 
really like the vitamin feedback. It is cool that it tells you 
what it contains. Reminds me of a video game, where you can 
inspect items and see their stats” (P05). 
Physical  Enclosure  
Multiple participants positively commented on the 
enclosure, with comments such as, “It’s small, light, and 
portable” (P04), and “The large surface area makes it easy 
to position the bread” (P01). Participants strongly agreed 
that it was easy to understand where to place the sample (M 
= 4.67, SD = 0.72). “I liked the arrows and colour 
indications on the box” (P05). They also agreed that it was 
easy to place the item in the correct position (M = 4.20, SD 
= 0.86). When asked about potential improvements to the 
enclosure, a few remarks about aesthetics were noted. 
“Would change the package a bit, make it less bulky and 
more flat.” (P08). Another participant believed the scanning 
process of smaller items could be improved with a redesign 

of the enclosure, “Make the box so that you put the item 
inside and scan it, and change the platform to be a bowl, so 
the item falls to the middle.” (P10). 
Future  Use  
The participants reported being comfortable when using the 
device (M = 4.47, SD = 0.64), and the general consensus was 
that they would use the technology on a daily basis (M = 
4.47, SD = 0.74). In addition, participants stated they would 
trust this type of technology (M = 4.53, SD = 0.64), "I think 
it was accurate and made correct identifications. I trust this 
machine more than my own judgement or some labels" 
(P12). However, a couple of participants expressed the 
importance of getting the scans right in certain situations, 
“False classifications could potentially be dangerous for the 
user. In those cases, accuracy is really important.” (P04). 

When probed about potential scenarios where they would use 
this technology, several participants mentioned food, 
pharmaceuticals, textiles, and various chemicals. Three 
participants proposed creative ways of using the technology: 
“It would be interesting to scan makeup to look for micro 
plastic. I don’t use makeup that can potentially damage the 
nature.” (P05). “I would like to scan food products for 
gelatine. We Muslims don’t eat products that contain it.” 
(P12). “It would be nice to have a survival scanner that could 
detect if food found in the nature (e.g., berries and 
mushrooms) are poisonous or safe to eat.” (P13). 

Typical information to look for could be nutritional content, 
Active Pharmaceutical Ingredient (API) percentages, 
allergens, and item quality. Multiple users would like to have 
the machine in a supermarket, to scan products and retrieve 
information about their quality (e.g., fruit ripeness). “Putting 
it in the supermarket would be really helpful, I can see a lot 
of people using it.” (P12). “It would be useful for dementia 
patients. Pharmaceuticals can look the same, but have 
strongly different effects.” (P04). Several participants 
envisioned that in the future, NIRS could be a helpful sensor 
embedded in their smartphones. Multiple participants also 
expressed their desire to have such a device in their home for 
a number of different reasons. Throughout the study, people 
were enthusiastic about the technology, and commented 
positively on its potential. 

DISCUSSION  
Towards  End-User  Near  Infrared  Spectroscopy    
Previous work on portable NIRS has mainly been concerned 
with testing performance under ideal conditions with domain 
experts [2,28,39]. However, there is a scarcity of research 
that highlights the potential use cases, design challenges, and 
solutions to enable non-experts to use NIRS. The effect of 
user-induced errors on NIRS can pose significant challenges, 
particularly for untrained users. Users currently have to 
operate the instrument through complex software and require 
knowledge about advanced analytical methods to understand 
the result. We argue that in order to make the technology 
more accessible and still produce reliable results, the scanner 



and its software/hardware controls must be designed to guide 
the user and avoid problematic scanning conditions. In this 
paper, we report and evaluate a hardware-software design 
that proved successful in guiding and facilitating the 
scanning process for non-expert end users.  

Our application provided simplified instructions for users 
with no previous contact with the technology. The warnings 
were designed to help users overcome probable scanning 
errors, and were shown to help them overcome sample 
misplacement. Our design effectively provides an interactive 
way to train users of the equipment, and our user study shows 
that participants were able to quickly start using the 
technology reliably without any verbal instructions.  

Furthermore, the 3D printed enclosure and sample holder 
enabled, for the most part, correct scanning behaviour by 
facilitating optimal object placement. Participants felt that 
the enclosure effectively guided them in correctly placing the 
samples, while at the same time protecting the device. One 
element of the scanning process that was rated slightly lower 
than others was the scanning time (M = 3.80, SD = 0.68). 
One potential reason for this is that the technology is quite 
new - it is possible that users have not yet formed an opinion 
on how long a scan should take. The scan time depends on 
the scan configuration (e.g., resolution, width, and SNR). By 
increasing the precision or reliability of the scan, it takes a 
longer time to complete. Some configurations are more 
appropriate, depending on the nature of the analysis and the 
scanning environment. Ultimately, what constitutes a 
feasible and acceptable scan time will depend on the scenario 
(e.g., supermarket, home) and the analysis requirements 
(e.g., allergens, API, nutrition, ripeness, poisonous). 

Moreover, one important challenge for end-user NIRS is the 
collection of reference scans. With our system, users have to 
indicate the type of objects that they are scanning so that the 
application can optimise the scanning configuration. This 
then loads the appropriate model depending on the user’s 
choice. We envision that in the future, devices will come pre-
loaded with models for commonly scanned objects. In 
addition, crowdsensing communities [24] can emerge to 
establish a shared repository of sample fingerprints to 
facilitate object identification. Furthermore, methods that 
enable use of existing knowledge-bases built by benchtop 
instruments can be used with acceptable performance [21].  
Implications  for  Practice  and  Research  
We tested a relatively cheap and miniaturised NIRS device 
on a wide set of everyday objects. We have shown how the 
device performs when scanning various objects with 
different physical characteristics. By better understanding 
these parameters, it is possible to design enclosures and 
applications that facilitate the correct usage of the 
technology. This would allow for a smartphone to be turned 
into an advanced scientific instrument by simply installing 
an application and coupling it to a NIRS device. As a result, 
even novice users would be able to conduct experiments, 
earlier limited only to trained lab personnel. For instance, 

farmers can be better informed on the best time to harvest 
their crops without relying on expensive or time-consuming 
methods. About 125,000 people die every year due to 
medication mismanagement and the estimated cost is around 
$300 billion [25]. Miniaturised NIRS could be implemented 
to help nurses or the users themselves (e.g., old adults) 
administer medicine. Furthermore, a number of interesting 
use cases that we did not envision were identified by our 
participants, highlighting the potential of the technology for 
a wide variety of everyday scenarios. For researchers, our 
study opens multiple avenues to explore. Due to the small 
form factor, our solution can be carried around by the user 
for in situ sample analysis. Furthermore, a multitude of 
everyday objects, from cups and dishes to shelves and 
refrigerators can begin to be instrumented with NIRS 
hardware to identify objects. Ubiquitous scanning stations 
where the NIRS is bundled with tablets could be installed in 
public locations and serve a broad group of users. As NIRS 
devices decrease in size and price, it may become possible to 
bind them to smartphones in the future. This could create a 
range of opportunities for scanning “in-the-wild” without 
having to carry around an additional device.  
Limitations  
The work presented in this paper has several limitations. 
First, we conducted the user-induced errors experiments 
using visual alignment. While both careful precision and 
measuring tools were used to align the samples, there may 
still exist some human error. Second, we did not compare 
participant usage of the technology with and without our 
solution. It would be unreasonable to give the hardware with 
its default elements and expect a participant to be able to 
conduct any given step of the scan and analysis process. 
Also, discussion about classification models is considered to 
be out of scope for this paper. Finally, we only utilise one 
NIRS scanner in this paper. While our findings can be used 
as guidelines for a larger array of hardware, it would be 
interesting to test multiple devices from different vendors for 
a more thorough investigation. 
CONCLUSION  
Our work has systematically investigated the effect of user-
induced errors and the complexity of the sampling process in 
the context of an affordable and miniaturised NIRS. We 
subsequently investigated the magnitude of these parameters 
to derive their potential impact on scanning quality and 
usability. Previous work has taken for granted that the 
instrument is used under ideal conditions by trained 
personnel. We show that NIRS can be successfully used by 
novice end-users, if the challenges explored in this paper are 
taken into consideration. This is validated through a user 
study where non-expert users test a NIRS equipped with a 
3D printed enclosure and smartphone application. The 
results indicate that the accuracy and user experience when 
using NIRS for object detection and analysis is adequate 
when use is facilitated with our proposed non-expert 
assistance. In our ongoing work, we intend to deploy an in 
situ scanner in a variety of different scenarios. 
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