
TestAWARE: A Laboratory-Oriented Testing Tool for Mobile
Context-Aware Applications

CHU LUO, The University of Melbourne
MIIKKA KUUTILA, SIMON KLAKEGG and DENZIL FERREIRA, University of Oulu
HUBER FLORES, University of Helsinki
JORGE GONCALVES, The University of Melbourne
MIKA MÄNTYLÄ, University of Oulu
VASSILIS KOSTAKOS, The University of Melbourne

Human-centered computing → Ubiquitous and mobile computing Soware and its
engineering → Soware verification and validation

ACM Reference format:

Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol.

http://doi.org/

DOI:

80

80:2 • C. Luo et al.

1 INTRODUCTION

 TestAWARE: A Laboratory-Oriented Testing Tool for Mobile Context-Aware Applications • 80:3

2 RELATED WORK

2.1 Testing Mobile Context-Aware Applications

80:4 • C. Luo et al.

2.2 The Gap to the Need for Mobile Context-Aware Testing

Table 1. Comparison

TestAWARE

 TestAWARE: A Laboratory-Oriented Testing Tool for Mobile Context-Aware Applications • 80:5

 Data type

 Data source

 Black/white-box testing

 Non-functional testing

 Environment

80:6 • C. Luo et al.

3 FUNCTIONALITY

Fig. 1. TestAWARE supports the fusion [17] of real-time, historical, and simulated data during testing.

3.1 Context Data Preparation

 TestAWARE: A Laboratory-Oriented Testing Tool for Mobile Context-Aware Applications • 80:7

3.2 Black-box Testing

3.3 White-box Testing

assertions

machine learning assertions

80:8 • C. Luo et al.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 3, Article 80.
Publication date: September 2017.

TestAWARE library. The assertion would compare the output of the application’s machine learning
classification (e.g. “FALL” or “NO-FALL”) versus the ground truth label that is included in the replayed data. In
case where the context recognition is not classification but a regression, the assertion compares the expected
value (ground truth label) versus the predicted value (as predicted by the application).

Third, the developer can insert a code snippet while the application launches, to enable energy
consumption profiling. This code snippet informs the TestAWARE client of the sensor energy
specifications of the handset that is tested. In our scenario, the developer would create a snippet that: defines
the “Nexus 5” as the handset; indicates “Accelerometer” (one of the sensor names being replayed); indicates
the sensing delay (e.g. “Normal”, as specified by Android documentation); and indicates the expected power
consumption per hour (e.g. “0.4 mAh per hour”). The expected power consumption may be defined according
to the developer’s expectations, or perhaps the hardware specifications of sensors (although those tend to be
inaccurate).

Finally, the developer can perform processing speed profiling by calling functions provided by the
TestAWARE library. These functions are meant to be called before and after a time-consuming operation
takes place, such as regression or classification. The developer can assign each measurement a label so that
multiple modules in the code can be measured without conflict. The functions are used to measure the time
that it takes for the operation to complete, and they communicate these results, in real time, to the
TestAWARE client. In our scenario, the developer would add this pair of statements around the line of code
that initiates classification when new accelerometer sensor values arrive. The developer would then see in the
TestAWARE client the average and worst-case durations recorded during the test.

4  FUNCTIONALITY IMPLEMENTATION
TestAWARE consists of a mobile client and code library, as shown in Fig. 2. We will detail the functions,
usage scenarios and design trade-offs of each component in the following subsections. Although TestAWARE
aims at the testing only on the Android platform due to its popularity, this architecture can be deployed to
build similar testing tools on other platforms, such as iOS and Windows.

As suggested by previous work [9,10], we implement both the mobile client and code library for the
Android platform. The purpose of TestAWARE is to facilitate the testing of different mobile context-aware
applications. Our main objective is to minimise the reliance on testing that requires the end-users of targeted
applications. Conceptually, TestAWARE is able obtain and replay “context”, and thus provide a reliable and
repeatable setting for testing context-aware applications.

Before replaying contextual data, developers should collect relevant datasets either from online sources or
from the device storage using local providers. Developers can also generate synthetic data programmatically
using the data manipulator. Once contextual data is available, the developer can replay it using the data
replayer, while in parallel the energy evaluator estimates the energy consumption of each sensor involved in
the replay. Both the client user interface and command API (Application Programming Interface) of the code
library provide replay control.

In black-box testing, developers cannot modify the targeted application. Hence, the targeted application
receives and processes data, and remains ignorant of the presence of the TestAWARE client and code library.
In this case, the targeted application outputs results as usual, and developers have to analyse these results
through the functionality of the targeted application (e.g., monitoring the user interface, or inspecting the
database of the targeted application), because the application does not send the results to the TestAWARE
client.

TestAWARE allows developers to perform white-box testing by importing the code library into the
targeted application. In this case, a context-aware module in the targeted application can output results to the
result recorder of the TestAWARE client. Then the machine learning evaluator can generate performance
analysis based on the recorded results. In addition, developers can make use of the processing speed evaluator
to record the time of executions. Similar to other white-box testing methods, the limitation is that the testing
requires modification in the source code of the targeted application.

 TestAWARE: A Laboratory-Oriented Testing Tool for Mobile Context-Aware Applications • 80:9

Fig. 2. TestAWARE architecture. The Client and Code Library are used to test the Targeted Application.

4.1 TestAWARE Client

4.1.1 Data Downloader.

80:10 • C. Luo et al.

Table 2. Mapping from requirements to design choices.

Requirement Design Choice

i.e.

Fig. 3. The TestAWARE client UI can be used to manage datasets and replay tasks.

 TestAWARE: A Laboratory-Oriented Testing Tool for Mobile Context-Aware Applications • 80:11

4.1.2 Local Provider.

ALGORITHM 1:

INPUT: a dataset with nonempty data sources in the replay D={d[0], d[1], …, d[n]}, speed multiple v
BEGIN:
1: foreach data source d[i] do in parallel
2: finished[i] false
3: if d[i] is audio then
4: goto line 20
5: else
6: set data instance I[current] as the first data instance of d[i]
7: send I[current]
8: if d[i] has next instance I[next] then
9: set t as the time difference between I[current] and I[next]
10: wait t/v
11: I[current] I[next]
12: goto line 7
13: else
14: finished[i] true
15: while for all integer j, -1<j<n+1, finished[j] is true do
16: goto END
17: end while
18: end if
19: end if
20: set frame F[current] as the first frame of d[i]
21: send F[current] via each channel of d[i]
22: if d[i] has next frame F[next] then
23: set s as the sample rate of d[i]
24: wait 1/(s v) second
25: F[current] F[next]
26: goto line 21
27: else
28: goto line 14
29: end if
30: end for

END

80:12 • C. Luo et al.

4.1.3 Data Replayer.

java.util.concurrent
ScheduledExecutorService

4.1.4 Result Recorder.

4.1.5 Machine Learning Evaluator.

N X
Y

yi Y
xi

Y

e.g.
Ysub

Y i.e.

e.g.

 TestAWARE: A Laboratory-Oriented Testing Tool for Mobile Context-Aware Applications • 80:13

time difference
Y

ALGORITHM 2:

INPUT: machine learning algorithm f, a dataset with raw data instances X = {x[1], …, x[N]} and ground truth sequence Y (it is
uncertain whether this sequence is complete), empty sequence , delay tolerance T in real-time clock
OUTPUT: output value , where is considered to be corresponding to yi in Y
BEGIN:
1: while Y has next instance y[next] do
2: set Ty as the timestamp of y[next]
3: while X has next instance x[next] do
4: set Tx as the timestamp of x[next]
5: input x[next] into f
6: if Tx > Ty then
7: add NULL into
8: break
9: end if
10: if f generates output then
11: if Ty – Tx < T then
12: add into
13: break
14: end if
15: end if
16: end while
17: end while
18: output

END

4.1.6 Energy Evaluator.

4.1.7 Processing Speed Evaluator.

80:14 • C. Luo et al.

Fig. 4. Screenshots of the TestAWARE client showing: a) machine learning evaluation results. The developer can choose
which class label is of interest (e.g., “Outdoor”), and view the precision and recall performance (y-axis). The x-axis shows

the sequence of ground truth labels during the test; b) the energy consumption profiling; c) the processing speed profiling.

4.2 TestAWARE Code Library

4.2.1 Command API.

 TestAWARE: A Laboratory-Oriented Testing Tool for Mobile Context-Aware Applications • 80:15

4.2.2 Data Manipulator.

Fig. 5. Fusion of real-time, historical and manipulated data using TestAWARE in the testing.

4.2.3 Data Receiving API.

4.3 Data Fusion Support

80:16 • C. Luo et al.

5 EVALUATION

5.1 Selecting Delay Tolerance

5.2 Maximal Data Replay Speed

 TestAWARE: A Laboratory-Oriented Testing Tool for Mobile Context-Aware Applications • 80:17

5.2.1 Data Replay on Smartphone.

✕

Fig. 6. Delay between unlock event, and ground truth label in our historical data.

Fig. 7. The variation in the time needed by our classifier to make an inference.

80:18 • C. Luo et al.

5.2.2 Data Replay on Tablets.
✕

✕

Fig. 8. Maximal speed of replaying audio files on
smartphones.

Fig. 9. Maximal speed of replaying sensor data and events

on smartphones.

Fig. 10. Maximal speed of replaying audio files on tablets.

Fig. 11. Maximal speed of replaying sensor data and
events on tablets.

 TestAWARE: A Laboratory-Oriented Testing Tool for Mobile Context-Aware Applications • 80:19

5.2.3 Data Replay on Emulators.

Fig. 12. Maximal speed of replaying audio files on emulators.

Fig. 13. Maximal speed of replaying sensor data and
events on emulators.

5.3 User Study

80:20 • C. Luo et al.

Table 3. Results of two testing tasks.

Question 1: Does data replay from TestAWARE help the testing in the two tasks?

“Data replay reduces the cost of data collection in industrial testing, without loss of
fidelity “To automate the testing, testers must have a tool
for data replay”

“Without data replay, it is hard to reproduce a bug which
was already detected in the past. If a detected bug cannot be reproduced, developers can hardly find the reason and
fix the bug”

 TestAWARE: A Laboratory-Oriented Testing Tool for Mobile Context-Aware Applications • 80:21

“Data replay is able to make the application run in
testing. Testing it directly in real-world context can also be a way to go”
estion 2: Does the TestAWARE mobile client help the testing in the first task? (average score:

80.2, median score: 85, standard deviation: 15.1) This question was to check whether the TestAWARE mobile
client supports developers to conduct the black-box testing. The scores show that the participants considered
the mobile client as a useful component of our testing tool. The majority of participants commented that the
client is easy to use and does not require testers to write scripts. However, the high standard deviation
indicates that participants judge its usefulness differently. Regarding the search for bugs, P1 stated: “The
client only replays the data for the tested application. It is hard to detect a bug because testers do not know
whether the data is successfully received. And testers do not know the correct output from the tested application”.
In terms of testing coverage, P13 stated: “Testers do not know how completely the application is tested. A
number of bugs may be missed”. P2, P5 and P11 stated: “It does not help you locate the bugs”. P12 stated: “It
helps testers who do not write code. But many bugs can be missed”.
estion 3: Does the TestAWARE code library help the testing in the second task? (average score:

91.2, median score: 90, standard deviation: 7.5) This question was to investigate whether the TestAWARE code
library supports developers to conduct the white-box testing. The scores show that participants perceived the
substantial usefulness of the code library, with lile divergence indicated by the low standard deviation. Most
participants commented that the code library enables the automation and more careful examination in the
testing. P1 stated: “The commands can automate a large number of testing rounds”. P8 stated: “The code library
helps the testing on not only high levels, but also the level of unit testing and integration testing. It can examine
every step of programs. It also locates the bug in the code”. P6 stated: “It is easy to debug when a flaw is detected
using the code library”. P12 stated: “The code library allows testers to match the output of soware and different
input”. However, they argued that it takes long time to conduct testing using the code library. P8 stated: “The
limitation is that testers use a lot of time to write testing scripts”. Accordingly, P13 suggested a solution: “In
practice, we may test only important components using this way, rather than all details”.

To confirm the effectiveness difference of our tool in the black-box and white-box testing, we compared the
scores of Q2 and Q3. First, we tested the normality of each distribution using the popular Shapiro-Wilk test.
We found that the scores of Q2 are not normally distributed (P=0.010), but those of Q3 are (P=0.070). Hence,
we used Mann–Whitney U test to verify the difference. The test identified a significant difference between the
two sets of scores (P=0.041).
estion 4: Does the assertion function help the testing in the second task? (average score: 89.5,

median score: 90, standard deviation: 10.1) This question was to investigate whether the run-time assertion
function of the TestAWARE code library provides help in the white-box testing. The high scores indicate that
the participants appreciated the importance of assertions in the testing. All participants agreed that
assertions accurately located the bug in the code. P2 stated: “Using run-time assertions is efficient and accurate.
They are beer than breakpoints because they require applications to run only once”. However, the slightly high
standard deviation indicated some limitations of run-time assertions: “Given a bug location, it still requires
some logical analysis to fix the bug” (P10); “Although a bug is located, understanding the whole scenario causing
the bug is sometimes a complex task” (P13).
estion 5: Does the machine learning evaluator help the testing in the second task? (average

score: 82.7, median score: 90, standard deviation: 19.4) This question aimed to investigate whether the
machine learning evaluator of our tool helps developers in analysing the machine learning performance of the
application. The scores reveal a general endorsement among participants. P1 stated: “It quickly gives an initial
performance summary to testers”. P11 stated: “It reflects the quality of code which uses machine learning
algorithms”. Comparatively, some participants perceived only limited usefulness, causing the high standard
deviation: “The tool evaluates machine learning using several simple measures. It may produce inaccurate
evaluation results” (P6); “Common testers may not pay much aention to machine learning performance. Also,
users may not care the accuracy of machine learning results” (P12).
estion 6: Does the power estimator help the testing in the second task? (average score: 83.2,

median score: 90, standard deviation: 23.2) This question was to investigate whether the power estimator

80:22 • C. Luo et al.

helps developers to assess the power consumption. The scores show that the participants have the need to
estimate the power consumption of context-aware applications. Regarding industrial mobile application
development, P1 stated: “The assessment of power use is indeed a process in mobile soware production. An
estimation is useful for testers to refer to”. P10 stated: “Estimation of power use from different sensors can help
testers balance the data collection and baery preservation”. However, several participants argued that the
estimation may have large errors, resulting in the high standard deviation. P5 and P7 stated: “The tool has
only estimation. It cannot measure the actual power consumption of practical usage”.
estion 7: Does the processing speed evaluator help the testing in the second task? (average

score: 86.3, median score: 90, standard deviation: 10.4) This question aimed to investigate whether the
processing speed evaluator helps developers in analysing the efficiency of certain procedures in the
application. The scores reveal the considerable usefulness perceived by participants. P7 stated: “Response time
is an essential index of user experience for mobile applications, especially for Android”. In terms of optimisation
of applications, P6 stated: “It helps testers find the bolenecks which testers may try to optimise”. P11 stated:
“Testers can compare different implementations and find the best one”.
estion 8: Is the maximal replay speed of audio, sensor and event data sufficient to in the

testing? (average score: 94.8, median score: 98, standard deviation: 5.7) This question was to investigate
whether the maximal speed of data replay satisfies the need of developers in the testing. As indicated by the
high scores and low standard deviation, all the participants agreed that the maximal replay speed suffices for
efficient testing. P3 stated: “It is fast enough. It reduces the testing time compared to testing in the real context”.
Regarding testing applications with longitudinal data collection, P11 and P12 stated: “The high speed is
enough to quickly complete a test if the data was collected across a long time”.

Question 9: Is it a useful feature of TestAWARE to support both physical device and emulator?

“Using real devices to measure process speed is
reliable” “I like to use emulator for
development and testing due to the convenience” “Emulators are easy for testers to automate
testing” “It is necessary to test applications on real devices
for checking compatibility on different hardware and OS”

6 DISCUSSION

6.1 User Study Findings

 TestAWARE: A Laboratory-Oriented Testing Tool for Mobile Context-Aware Applications • 80:23

6.2 Data Replay for Testing

80:24 • C. Luo et al.

6.3 Testing Non-functional Properties

6.4 Implications for Testing Mobile Context-Aware Applications

6.4.1 Heterogeneous Data.

 TestAWARE: A Laboratory-Oriented Testing Tool for Mobile Context-Aware Applications • 80:25

6.4.2 Multiple Sources of Testing Data.

6.4.3 Black-box Testing.

6.4.4 White-box Testing.

80:26 • C. Luo et al.

6.4.5 Non-functional Testing.

6.4.6 Testing on Physical Devices and Emulators.

 TestAWARE: A Laboratory-Oriented Testing Tool for Mobile Context-Aware Applications • 80:27

6.4.7 Benefits of using TestAWARE.

Table 4. Benefits of using TestAWARE.

Feature Benefit

6.5 Limitations and Future Work

80:28 • C. Luo et al.

7 CONCLUSION

ACKNOWLEDGMENTS

REFERENCES

International Conference on Soware Testing, Verification and Validation Workshops

International Conference on Soware Testing, Verification and Validation Workshops

Proceedings of the 4th International Workshop on Modeling Social Media

Proceedings of the 5th international conference on Mobile systems, applications and services
Understanding Context with

ContextViewer – Tool for Visualization and Initial Preprocessing of Mobile Sensors Data.

Proceedings of the 9th ACM Conference on Embedded Networked
Sensor Systems

Proceedingsc of the 13th
international conference on Intelligent user interfaces - IUI '09

 TestAWARE: A Laboratory-Oriented Testing Tool for Mobile Context-Aware Applications • 80:29

Frontiers in ICT

International Conference on Soware Engineering

Proceedings of the 29th Annual ACM Symposium on Applied Computing

International Symposium on Performance Analysis of Systems and Soware

International
Conference on Mobile and Ubiquitous Multimedia

Flow and the Foundations of Positive
Psychology

Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Soware
Engineering

International Joint Conference
on Pervasive and Ubiquitous Computing Adjunct

Proceedings of the 38th International Conference on Soware Engineering Companion

Proceedings of the 2016 ACM International
Joint Conference on Pervasive and Ubiquitous Computing

Automation of Soware Test (AST), 2012 7th International Workshop on

Proceedings of the 38th International Conference on Soware Engineering

Proceedings of the 12th ACM international
conference on Ubiquitous computing

Intelligent Environments (IE), 2011 7th
International Conference on

Personal Communications, IEEE

Proceedings of the 2012 ACM Conference on Ubiquitous Computing

Big Data

Vehicular Technology Conference

Conference on Human Factors in Computing Systems

Proceedings of the 2015 IEEE 23rd International
Conference on Program Comprehension

