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1 INTRODUCTION 
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2  RELATED WORK 

2.1  Testing Mobile Context-Aware Applications 
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2.2  The Gap to the Need for Mobile Context-Aware Testing 

Table 1. Comparison 

TestAWARE 



 TestAWARE: A Laboratory-Oriented Testing Tool for Mobile Context-Aware Applications • 80:5 

 Data type

 Data source

 Black/white-box testing

 Non-functional testing

 Environment
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3  FUNCTIONALITY 

Fig. 1. TestAWARE supports the fusion [17] of real-time, historical, and simulated data during testing. 

3.1  Context Data Preparation 
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3.2  Black-box Testing 

3.3  White-box Testing 

assertions

machine learning assertions
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TestAWARE library. The assertion would compare the output of the application’s machine learning
classification (e.g. “FALL” or “NO-FALL”) versus the ground truth label that is included in the replayed data. In
case where the context recognition is not classification but a regression, the assertion compares the expected
value (ground truth label) versus the predicted value (as predicted by the application).

Third, the developer can insert a code snippet while the application launches, to enable energy
consumption profiling. This code snippet informs the TestAWARE client of the sensor energy
specifications of the handset that is tested. In our scenario, the developer would create a snippet that: defines
the “Nexus 5” as the handset; indicates “Accelerometer” (one of the sensor names being replayed); indicates
the sensing delay (e.g. “Normal”, as specified by Android documentation); and indicates the expected power
consumption per hour (e.g. “0.4 mAh per hour”). The expected power consumption may be defined according
to the developer’s expectations, or perhaps the hardware specifications of sensors (although those tend to be
inaccurate).

Finally, the developer can perform processing speed profiling by calling functions provided by the
TestAWARE library. These functions are meant to be called before and after a time-consuming operation
takes place, such as regression or classification. The developer can assign each measurement a label so that
multiple modules in the code can be measured without conflict. The functions are used to measure the time
that it takes for the operation to complete, and they communicate these results, in real time, to the
TestAWARE client. In our scenario, the developer would add this pair of statements around the line of code
that initiates classification when new accelerometer sensor values arrive. The developer would then see in the
TestAWARE client the average and worst-case durations recorded during the test.

4  FUNCTIONALITY IMPLEMENTATION
TestAWARE consists of a mobile client and code library, as shown in Fig. 2. We will detail the functions,
usage scenarios and design trade-offs of each component in the following subsections. Although TestAWARE
aims at the testing only on the Android platform due to its popularity, this architecture can be deployed to
build similar testing tools on other platforms, such as iOS and Windows.

As suggested by previous work [9,10], we implement both the mobile client and code library for the
Android platform. The purpose of TestAWARE is to facilitate the testing of different mobile context-aware
applications. Our main objective is to minimise the reliance on testing that requires the end-users of targeted
applications. Conceptually, TestAWARE is able obtain and replay “context”, and thus provide a reliable and
repeatable setting for testing context-aware applications.

Before replaying contextual data, developers should collect relevant datasets either from online sources or
from the device storage using local providers. Developers can also generate synthetic data programmatically
using the data manipulator. Once contextual data is available, the developer can replay it using the data
replayer, while in parallel the energy evaluator estimates the energy consumption of each sensor involved in
the replay. Both the client user interface and command API (Application Programming Interface) of the code
library provide replay control.

In black-box testing, developers cannot modify the targeted application. Hence, the targeted application
receives and processes data, and remains ignorant of the presence of the TestAWARE client and code library.
In this case, the targeted application outputs results as usual, and developers have to analyse these results
through the functionality of the targeted application (e.g., monitoring the user interface, or inspecting the
database of the targeted application), because the application does not send the results to the TestAWARE
client.

TestAWARE allows developers to perform white-box testing by importing the code library into the
targeted application. In this case, a context-aware module in the targeted application can output results to the
result recorder of the TestAWARE client. Then the machine learning evaluator can generate performance
analysis based on the recorded results. In addition, developers can make use of the processing speed evaluator
to record the time of executions. Similar to other white-box testing methods, the limitation is that the testing
requires modification in the source code of the targeted application.
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Fig. 2. TestAWARE architecture. The Client and Code Library are used to test the Targeted Application. 

4.1  TestAWARE Client 

4.1.1 Data Downloader. 
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Table 2. Mapping from requirements to design choices. 

Requirement Design Choice 

i.e.

   

Fig. 3. The TestAWARE client UI can be used to manage datasets and replay tasks. 
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4.1.2 Local Provider. 

ALGORITHM 1:

INPUT: a dataset with nonempty data sources in the replay D={d[0], d[1], …, d[n]}, speed multiple v 
BEGIN: 
1: foreach data source d[i] do in parallel 
2:  finished[i]  false 
3:  if d[i] is audio then 
4:   goto line 20 
5:  else 
6:   set data instance I[current] as the first data instance of d[i] 
7:   send I[current] 
8:   if d[i] has next instance I[next] then 
9:    set t as the time difference between I[current] and I[next] 
10:    wait t/v 
11:    I[current]   I[next] 
12:    goto line 7 
13:   else 
14:    finished[i]  true 
15:    while for all integer j, -1<j<n+1, finished[j] is true do 
16:     goto END 
17:    end while 
18:   end if 
19:  end if 
20:  set frame F[current] as the first frame of d[i] 
21:  send F[current] via each channel of d[i] 
22:  if d[i] has next frame F[next] then 
23:   set s as the sample rate of d[i] 
24:   wait 1/(s v) second 
25:   F[current]   F[next] 
26:   goto line 21 
27:  else 
28:   goto line 14 
29:  end if 
30: end for 

END 
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4.1.3 Data Replayer.

java.util.concurrent
ScheduledExecutorService

4.1.4 Result Recorder.

4.1.5 Machine Learning Evaluator. 

N X
Y

yi Y
xi

Y

e.g.
Ysub

Y i.e.

e.g.
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time difference
Y

ALGORITHM 2:

INPUT: machine learning algorithm f, a dataset with raw data instances X = {x[1], …, x[N]} and ground truth sequence Y (it is 
uncertain whether this sequence is complete), empty sequence , delay tolerance T in real-time clock 
OUTPUT: output value , where   is considered to be corresponding to yi in Y 
BEGIN: 
1: while Y has next instance y[next] do  
2:  set Ty as the timestamp of y[next] 
3:  while X has next instance x[next] do 
4:   set Tx as the timestamp of x[next] 
5:   input x[next] into f 
6:   if Tx > Ty then 
7:    add NULL into  
8:    break 
9:   end if 
10:   if f generates output  then 
11:    if Ty – Tx < T then 
12:     add  into  
13:     break 
14:    end if 
15:   end if 
16:  end while 
17:  end while   
18:  output  

END 

4.1.6 Energy Evaluator.

4.1.7 Processing Speed Evaluator.
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Fig. 4. Screenshots of the TestAWARE client showing: a) machine learning evaluation results. The developer can choose 
which class label is of interest (e.g., “Outdoor”), and view the precision and recall performance (y-axis). The x-axis shows 

the sequence of ground truth labels during the test; b) the energy consumption profiling; c) the processing speed profiling. 

4.2  TestAWARE Code Library 

4.2.1 Command API.
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4.2.2 Data Manipulator. 

Fig. 5. Fusion of real-time, historical and manipulated data using TestAWARE in the testing. 

4.2.3 Data Receiving API.

4.3  Data Fusion Support 



80:16 • C. Luo et al. 

5  EVALUATION 

5.1  Selecting Delay Tolerance 

5.2  Maximal Data Replay Speed 
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5.2.1  Data Replay on Smartphone. 

✕

Fig. 6. Delay between unlock event, and ground truth label in our historical data. 

Fig. 7. The variation in the time needed by our classifier to make an inference. 
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5.2.2  Data Replay on Tablets.
✕

✕

Fig. 8. Maximal speed of replaying audio files on 
smartphones. 

 
Fig. 9. Maximal speed of replaying sensor data and events 

on smartphones. 

Fig. 10. Maximal speed of replaying audio files on tablets. 
 

Fig. 11. Maximal speed of replaying sensor data and 
events on tablets. 
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5.2.3  Data Replay on Emulators. 

Fig. 12. Maximal speed of replaying audio files on emulators. 
 

Fig. 13. Maximal speed of replaying sensor data and 
events on emulators. 

5.3  User Study 
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Table 3. Results of two testing tasks. 

Question 1: Does data replay from TestAWARE help the testing in the two tasks? 

“Data replay reduces the cost of data collection in industrial testing, without loss of 
fidelity “To automate the testing, testers must have a tool 
for data replay”

“Without data replay, it is hard to reproduce a bug which 
was already detected in the past. If a detected bug cannot be reproduced, developers can hardly find the reason and 
fix the bug”
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“Data replay is able to make the application run in 
testing. Testing it directly in real-world context can also be a way to go”
estion 2: Does the TestAWARE mobile client help the testing in the first task? (average score: 

80.2, median score: 85, standard deviation: 15.1) This question was to check whether the TestAWARE mobile 
client supports developers to conduct the black-box testing. The scores show that the participants considered 
the mobile client as a useful component of our testing tool. The majority of participants commented that the 
client is easy to use and does not require testers to write scripts. However, the high standard deviation 
indicates that participants judge its usefulness differently. Regarding the search for bugs, P1 stated: “The 
client only replays the data for the tested application. It is hard to detect a bug because testers do not know 
whether the data is successfully received. And testers do not know the correct output from the tested application”. 
In terms of testing coverage, P13 stated: “Testers do not know how completely the application is tested. A 
number of bugs may be missed”. P2, P5 and P11 stated: “It does not help you locate the bugs”. P12 stated: “It 
helps testers who do not write code. But many bugs can be missed”. 
estion 3: Does the TestAWARE code library help the testing in the second task? (average score: 

91.2, median score: 90, standard deviation: 7.5) This question was to investigate whether the TestAWARE code 
library supports developers to conduct the white-box testing. The scores show that participants perceived the 
substantial usefulness of the code library, with lile divergence indicated by the low standard deviation. Most 
participants commented that the code library enables the automation and more careful examination in the 
testing. P1 stated: “The commands can automate a large number of testing rounds”. P8 stated: “The code library 
helps the testing on not only high levels, but also the level of unit testing and integration testing. It can examine 
every step of programs. It also locates the bug in the code”. P6 stated: “It is easy to debug when a flaw is detected 
using the code library”. P12 stated: “The code library allows testers to match the output of soware and different 
input”. However, they argued that it takes long time to conduct testing using the code library. P8 stated: “The 
limitation is that testers use a lot of time to write testing scripts”. Accordingly, P13 suggested a solution: “In 
practice, we may test only important components using this way, rather than all details”. 

To confirm the effectiveness difference of our tool in the black-box and white-box testing, we compared the 
scores of Q2 and Q3. First, we tested the normality of each distribution using the popular Shapiro-Wilk test. 
We found that the scores of Q2 are not normally distributed (P=0.010), but those of Q3 are (P=0.070). Hence, 
we used Mann–Whitney U test to verify the difference. The test identified a significant difference between the 
two sets of scores (P=0.041). 
estion 4: Does the assertion function help the testing in the second task? (average score: 89.5, 

median score: 90, standard deviation: 10.1) This question was to investigate whether the run-time assertion 
function of the TestAWARE code library provides help in the white-box testing. The high scores indicate that 
the participants appreciated the importance of assertions in the testing. All participants agreed that 
assertions accurately located the bug in the code. P2 stated: “Using run-time assertions is efficient and accurate. 
They are beer than breakpoints because they require applications to run only once”. However, the slightly high 
standard deviation indicated some limitations of run-time assertions: “Given a bug location, it still requires 
some logical analysis to fix the bug” (P10); “Although a bug is located, understanding the whole scenario causing 
the bug is sometimes a complex task” (P13).  
estion 5: Does the machine learning evaluator help the testing in the second task? (average 

score: 82.7, median score: 90, standard deviation: 19.4) This question aimed to investigate whether the 
machine learning evaluator of our tool helps developers in analysing the machine learning performance of the 
application. The scores reveal a general endorsement among participants. P1 stated: “It quickly gives an initial 
performance summary to testers”. P11 stated: “It reflects the quality of code which uses machine learning 
algorithms”. Comparatively, some participants perceived only limited usefulness, causing the high standard 
deviation: “The tool evaluates machine learning using several simple measures. It may produce inaccurate 
evaluation results” (P6); “Common testers may not pay much aention to machine learning performance. Also, 
users may not care the accuracy of machine learning results” (P12). 
estion 6: Does the power estimator help the testing in the second task? (average score: 83.2, 

median score: 90, standard deviation: 23.2) This question was to investigate whether the power estimator 
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helps developers to assess the power consumption. The scores show that the participants have the need to 
estimate the power consumption of context-aware applications. Regarding industrial mobile application 
development, P1 stated: “The assessment of power use is indeed a process in mobile soware production. An 
estimation is useful for testers to refer to”. P10 stated: “Estimation of power use from different sensors can help 
testers balance the data collection and baery preservation”. However, several participants argued that the 
estimation may have large errors, resulting in the high standard deviation. P5 and P7 stated: “The tool has 
only estimation. It cannot measure the actual power consumption of practical usage”. 
estion 7: Does the processing speed evaluator help the testing in the second task? (average 

score: 86.3, median score: 90, standard deviation: 10.4) This question aimed to investigate whether the 
processing speed evaluator helps developers in analysing the efficiency of certain procedures in the 
application. The scores reveal the considerable usefulness perceived by participants. P7 stated: “Response time 
is an essential index of user experience for mobile applications, especially for Android”. In terms of optimisation 
of applications, P6 stated: “It helps testers find the bolenecks which testers may try to optimise”. P11 stated: 
“Testers can compare different implementations and find the best one”. 
estion 8: Is the maximal replay speed of audio, sensor and event data sufficient to in the 

testing? (average score: 94.8, median score: 98, standard deviation: 5.7) This question was to investigate 
whether the maximal speed of data replay satisfies the need of developers in the testing. As indicated by the 
high scores and low standard deviation, all the participants agreed that the maximal replay speed suffices for 
efficient testing. P3 stated: “It is fast enough. It reduces the testing time compared to testing in the real context”. 
Regarding testing applications with longitudinal data collection, P11 and P12 stated: “The high speed is 
enough to quickly complete a test if the data was collected across a long time”. 

Question 9: Is it a useful feature of TestAWARE to support both physical device and emulator?

“Using real devices to measure process speed is 
reliable” “I like to use emulator for 
development and testing due to the convenience” “Emulators are easy for testers to automate 
testing” “It is necessary to test applications on real devices 
for checking compatibility on different hardware and OS”

6  DISCUSSION 

6.1  User Study Findings 
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6.2  Data Replay for Testing 
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6.3  Testing Non-functional Properties 

6.4  Implications for Testing Mobile Context-Aware Applications 

6.4.1 Heterogeneous Data.
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6.4.2 Multiple Sources of Testing Data.

6.4.3 Black-box Testing.

6.4.4 White-box Testing. 
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6.4.5 Non-functional Testing. 

6.4.6 Testing on Physical Devices and Emulators. 
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6.4.7 Benefits of using TestAWARE.

Table 4. Benefits of using TestAWARE. 

Feature Benefit 

6.5  Limitations and Future Work 
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7  CONCLUSION 
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