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ABSTRACT 

Previous work suggests that Quantified-Self applications can 

retain long-term usage with motivational methods. These 

methods often require intermittent attention requests with 

manual data input. This may cause unnecessary burden to the 

user, leading to annoyance, frustration and possible 

application abandonment. We designed a novel method that 

uses on-screen alert dialogs to transform recurrent 

smartphone usage sessions into moments of data 

contributions and evaluate how accurately machine learning 

can reduce unintended interruptions. We collected sensor 

data from 48 participants during a 4-week long deployment 

and analysed how personal device usage can be considered 

in scheduling data inputs. We show that up to 81.7% of user 

interactions with the alert dialogs can be accurately predicted 

using user clusters, and up to 75.5% of unintended 

interruptions can be prevented and rescheduled. Our 

approach can be leveraged by applications that require self-

reports on a frequent basis and may provide a better 

longitudinal QS experience. 
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INTRODUCTION 
Quantified-Self (QS) applications are often criticised for 

lacking sustained long-term use [17, 24, 45]. While most 

users of QS applications start with an inherent motivation for 

self-monitoring, their engagement tends to decrease over 

time and the applications are subsequently abandoned. User 

motivation can be positively affected with user-driven 

insights [4], but collecting sufficient amount of data to 

generate such insights can introduce a reliance on manual 

data collection [3]. Choe et al. [8] recently highlighted the 

frequent requirement of self-reports in self-monitoring 

applications. Fritz et al. [15] report that the higher the effort 

to use an application, the shorter the lifetime of the 

application. As QS relies on continuous tracking [42], the 

issues presented here are core challenges within this 

application space. More critically, applications’ 

abandonment often leads to the users returning to their old 

habits in the end [24]. 

Bentley et al. [3] use Android notifications to remind users 

to log data and increase the quantity of logged data. Our 

approach extends this work by presenting opportunistically 

displayed on-screen alert dialogs, shown during active 

smartphone use. These dialogs enable the user to log data 

directly, and do not require the user to launch a separate 

application, which is often the case with notification 

reminders. Notifications have some drawbacks as they can 

be presented to user even when the user is not present, and 

can exist on the background. Dialogs and notifications differ 

as notifications do not require immediate interaction from the 

user. The requirement for interaction with a dialog can, 

however, be experienced as interrupting. We attempt to 

mitigate this side-effect by pre-emptively predicting their 

likelihood of interruption. Specifically, we infer user 

interruptibility by reconstructing the in-situ context of the 

user using multiple sensors on their smartphone in real time. 

The field of inferring human interruptibility using sensors is 

widely explored under the umbrella of interruptibility [14]: 

recognising opportune moments to triggering notifications 

[22, 35, 39], effect of interruptions on quality of logged data 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 

bear this notice and the full citation on the first page. Copyrights for 

components of this work owned by others than the author(s) must be 
honored. Abstracting with credit is permitted. To copy otherwise, or 

republish, to post on servers or to redistribute to lists, requires prior specific 

permission and/or a fee. Request permissions from Permissions@acm.org. 
 

MobileHCI '17, September 04-07, 2017, Vienna, Austria  

© 2017 Copyright is held by the owner/author(s). Publication rights 
licensed to ACM. 
ACM ISBN 978-1-4503-5075-4/17/09…$15.00  
http://dx.doi.org/10.1145/3098279.3098532. 



[30], as well as the effect of interruptions on interactions and 

task completion [27].  

The reliance on continuous data logging inherently increases 

users’ compliance effort and may overwhelm them if 

performed over extended periods of time. We propose a 

method to reduce the data logging burden. We base our 

method on the frequency and brief nature of the large 

majority of smartphone usage sessions [11, 41, 46], as well 

as the frequent non-task oriented nature of smartphone usage 

[6, 28, 38]. By transforming these recurrent moments of brief 

smartphone usage (e.g., ‘killing time’ [6]) into data 

contributions for QS applications, the quantity of logged data 

increases while the effort associated with data input is 

reduced. We analyse different smartphone user usage 

patterns - frequency and duration of use [46, 47], and 

interaction styles [10] - to form groups of users with similar 

traits, improving the prediction accuracy of presenting alert 

dialogs in an uninterrupting fashion.  

We present the findings of a 4-week long study measuring 

alert dialogs’ interruptibility and applicability in a QS 

context. Specifically, we deploy a mobile QS application 

which provides on-screen alert dialogs as an input 

mechanism for data logging. A total of 48 participants used 

our application for life-logging and we measured their 

interactions and attitudes towards the alert dialogs. We 

conduct a post-study survey to gather qualitative feedback. 

We evaluate several machine-learning classifiers’ overall 

performance and power to minimise interruptions. We 

demonstrate the feasibility of how machine learning 

classifiers can decrease the frequency of interrupting 

prompts with the use of on-device sensors that measure the 

surrounding context, and the context of device usage. By 

clustering users into groups, we improved classifiers’ 

accuracy without a required training period. The use of 

frequently occurring input prompts can benefit quantified-

self applications in enabling opportunistic self-reported data 

input, crucial for longitudinal use.  

RELATED WORK 

The field of interruptibility research aims to determine a 

user’s availability, readiness, and interest in a given content 

element [14]. Social and behavioural cues allow humans to 

assess a person’s level of interruptibility [2, 19]. In 2005, 

Fogarty et al. [14] found that relatively simple external 

sensors can be used to successfully construct a model on a 

person’s interruptibility. However, these sensors must be 

installed in the environment of the user pre-emptively (e.g., 

to detect if a conversation is taking place). 

Untimely interruptions affect the user in various forms, e.g. 

increased cognitive and information overload [34], delayed 

task completion [27], or reduced quality of logged 

information [30]. Okoshi et al. [34] showcase two methods 

to successfully address the problem of disruptive 

interruptions: 1) rescheduling interruptions to arrive at 

another time, and 2) mitigating the number or frequency of 

such interruptions. Successful timing of interruptions has a 

positive effect on both time management and task efficiency 

[22]. 

Using machine learning to detect interruptibility has proven 

to be a successful method in the past. Interruptibility has been 

assessed e.g., through analysing both mobile phone sensor 

data (e.g., device posture [39], acceleration sensor [20]), 

wearable devices with embedded sensors [25], and high-

level data such as application usage patterns or location data 

[35, 38, 39]. From select features, predictions can be made 

regarding the user’s interruptibility, e.g., using activity 

breakpoints [33], or rules [29] to decide when and what kind 

of push notifications to present to the user. A variety of 

machine learning classifiers exist to create a general users’ 

interruptibility model: a) trees, such as Random Forests [5] 

or C4.5; b) Bayesian classifiers, such as Naïve Bayes; or c) 

Support Vector Machines (SVM), such as LibSVM. For 

these models, researchers select similar classifier features, 

e.g., Poppinga et al. [39] explored the correlation between 

different smartphone sensors and user interruptibility, where 

time of day and screen coverage are good predictors. Pielot 

[36] analysed the availability of mobile phone users to accept 

incoming calls using a variety of contextual data (e.g., 

physical activity, screen status, day of the week) in addition 

to similar hardware sensors. 

Users have distinguishable traits of device usage in terms of 

session frequencies and durations [46, 47], application 

selection [48, 49], and interactions [10]. Higher-level 

contextual features are able to construct the user’s personal 

preferences in detail. Pielot et al. [37] model the user’s 

attentiveness to messages from instant messaging 

applications using past behavioural usage data from these 

applications. When analysing the user’s level of boredom 

[38], additional measures are analysed to obtain a higher 

degree of user context: audio jack state, airplane mode status, 

network activity, screen orientation, and current foreground 

application. On the other hand, recent work has put more 

focus on modelling user groups to achieve higher accuracies. 

Zhao et al. [49] and Welke et al. [48] analysed application 

usage and inferred several distinct user types with 

identifiable characteristics. 

Previous work has shown the disruptive nature of 

smartphone information push methods, such as notifications 

[40]. The distractive nature is relevant for those applications 

or services that aim to use push methods to collect user data 

- for example applications in the area of QS or experience 

sampling. Mehrotra et al. [30, p.1] highlight this challenging 

balance for ESM studies: “obtaining high quality data with 

ESM is challenging, as users may fail to respond honestly, 

or may even ignore the questionnaire prompts if they 

perceive the study as too burdensome”. To address the issue 

of burdensome notifications, researchers have explored 

various potential solutions. Context inference is used to 

assess the user’s interruptibility in both the current and future 

contexts to decide the best time for interruption in terms of 

quality of the content of the response [30]. Hsieh et al. [21] 



display feedback to participants following an ESM 

questionnaire to make the submission of data more 

personally relevant. Leiva et al. [27] explore preventive 

methods, such as preparing the user to leave the current task 

before the interruption, and ways to guide the user back to 

the task by e.g. replaying the UI interactions prior to 

interruption. 

Quoting Okoshi et al. [34, p.2]: “Rather than forcing users 

to manually check whether new information is available, 

notifications instead push new information to users, resulting 

in faster and increased awareness.” The authors state that 

‘interruptive overload’ can either be targeted through a) 

scheduling (deferring) notifications, or b) mitigation of the 

amount of notifications. As an end result, the Attelia 

middleware for notification management [34], reduced the 

cognitive load of the arriving notifications by 46%, and 

increased the response times (i.e., users were quicker to 

interact with the notification) by 13%. Here, we aim to use 

machine learning to detect opportune moments for 

quantified-self data input (as alert dialogs), reducing the 

burden of data input requests and increase the response 

times.  

OPPORTUNE INTERRUPTION USING ALERT DIALOGS 

In an attempt to solve the issue of users being burdened by 

the requirement of continuous logging [3, 15, 42], we argue 

that by inferring situations in which the user is not actively 

performing a task, opportune moments for data contributions 

can be identified. Brown et al.’s [6] large scale study of 

mobile device use recognised three use types, where the user 

is not actively performing a task: 

 Occasioning use is initiated by the device (e.g. an arriving 

notification from a messaging application) and creates a 

timeframe where the user can naturally attend to the device. 

 Filling time enables otherwise ‘dead time’ to be put into 

use (e.g., enjoying a video game or browsing social media 

via the smartphone). 

 Micro-breaks, similar to micro-usage of application use 

[11], are brief sessions of device usage where the user 

shortly interrupts his main tasks or activity. 

For all of these usage types, users do not necessarily have a 

clear task during the usage session - it is therefore less likely 

that the user experiences interruption when presented with an 

input prompt. Van Berkel et al. [46] analyse smartphone 

usage sessions based on sensor data tracked from 

participants’ devices, and categorise usage sessions into 

continuing and new sessions, and these sessions indicate 

either chosen or forced breaks in smartphone use. By 

identifying otherwise unproductive usage sessions with in-

situ context of the smartphone, we aim to partially transform 

these sessions into self-report data contributions (i.e., 

effective quantified-self data). 

One must keep the required interaction with a prompt short 

[43, 44]. Thus, a method needs to be developed that is a) 

quick to interact with, and b) when necessary, easy to 

dismiss. Approaches by previous work that leverage brief 

interactions are Slide to X [43] and Twitch crowdsourcing 

[44], both of which utilise the smartphone unlocking event 

to collect data. Our chosen interaction modality is an alert 

dialog - used predominantly on desktop environments and 

web browsers, but sparingly on smaller screens. When used 

for the presentation of information, alert dialogs are 

habitually ignored [7] and also found to be disruptive [31]. 

Akhawe et al. [1] performed a large-scale assessment of 

browser warning dialogs and conclude that the design of the 

dialog window has a tremendous impact on both the user 

experience and user’s responsiveness to the dialog. 

Two common issues with mobile information presentation 

methods are cognitive overload [27, 40] and interruption of 

the user’s main task. We believe that, if presented and timed 

carefully, an alert dialog can minimise both issues. Alert 

dialogs are occasionally used in tandem with the Experience 

Sampling Method [26], and the response rates when used in 

this way are generally quite high. For example, Van Berkel 

et al. [46] report 83.78% response rate and average response 

time of less than 3 seconds. The interruptive nature of push 

notifications is also diminished when the source of the 

interruption is deemed as beneficial to the user [40]. We 

argue that this is also the case for QS applications, and the 

interruptive nature of prompts originating from these 

applications is reduced. 

Our hypothesis is that, by leveraging naturally appearing 

periods of smartphone use where the user is not actively 

performing a task (i.e. aimlessly juggling applications while 

bored [6, 28]), we can transform such usage sessions into 

data contributions. This can increase the quantity and quality 

of the data gathered by QS applications and potentially 

motivate users to continue self-monitoring, if the user’s 

interruptibility can be predicted before deciding whether or 

not to present the input prompts. Alert dialogs can potentially 

fill these conditions based on their inherent properties, 

described in Table 1. 

Predicting Interruption In-Situ 

To present alert dialogs at appropriate times (R2), we must 

be able to predict whether an alert dialog would be 

considered interrupting in the current context. Context is 

described by properties such as physical elements of the 

surrounding environment [9]. When considering a 

smartphone, context also includes the internal measured 

through the device, e.g., the chosen application or battery 

status. Based on the understanding of mobile context, and the 

contextual information logged by previous work [35-39], we 

capture those contextual factors which have been shown to 

impact the user’s response to interruptions – factors related 

to usage session, battery, application use, network status, 

physical activity, and time of the day. An important element 

of alert dialogs is the requirement for interaction, and as the 

alert dialog is presented on top of any other interface 

elements, it shifts the user’s focus from a previous task. This 

can result in high probability of interruption. 



 Description 
  

  
 R

eq
u

ir
em

en
ts

 R1 Alert dialogs can be interacted with very 

briefly. 

R2 Alert dialogs can be presented to the user at 

appropriate times. 

R3 Alert dialogs are easy to remove. 

R4 Alert dialogs can be quickly generated 

(users prefer no loading screens [16, 32]). 

Table 1. Conditional requirements for effortless self-reports. 

Due to the brief interaction times associated with alert 

dialogs, we assume that the context of the event does not 

change during the interaction, according to conditions R1 

(brief interactions) and R3 (quick dismissal). In our 

application, user can interact with the alert dialog by 

accepting or dismissing the dialog, and by either contributing 

data or opting not to contribute. The response interaction 

label is logged with the in-situ context. We then proceed to 

analyse the dataset in terms of whether the context of an 

instance could predict the interactions with the dialog. We 

argue that the cost of unwanted interruptions is higher to the 

user than the cost of potentially missed data contributions. 

Thus, our aim is to minimise the number of events where a 

dialog was generated but ultimately experienced as 

unwanted. 

LIFETRACKER APPLICATION 

Based on our four requirements (Table 1), we developed a 

QS application called LifeTracker to collect data using alert 

dialogs as the go-to method, and to collect user interactions 

with the alert dialogs. LifeTracker logs self-reported data, 

and sensor data logged on the background using the AWARE 

framework [12, 13] to collect the in-situ context of each 

presented dialog and securely synchronise the data to a 

remote server. To infer the context, we collect the sensor data 

motivated by previous work, data related to the usage 

session, and data related to the interactions with the 

LifeTracker application. We choose not to gather privacy 

sensitive information, such as application use or location 

data. Summary of tracked information is listed in Table 2. 

The application has three different logging schemas (i.e., set 

of tracked variables) custom-designed for different types of 

self-monitoring needs: mood, physical exercise, and flu-like 

symptoms (Figure 1 top left). Each schema has multiple 

variables that can be logged – not mandatory – once per hour 

or once per day. For example, the exercise schema allows 

participants to log their number of stretching sessions (daily) 

as well as their experienced level of dehydration (hourly). 

The data is captured using the alert dialogs (Figure 1 top 

right), or by explicitly launching the application (Figure 1 

bottom). 

In addition to collecting data, the LifeTracker application 

also enables the user to view historical data using 

visualisations of weekly, daily, and hourly granularity. 

Variable Description 

Data contribution Data logged in the current usage session 

Dialog delay Delay (s) of dialog generation since device unlock 

Session duration Duration (s) of the usage session 

Call Call during the current usage session 
No. of sessions Number of usage sessions in the last five minutes 

Last session Time (s) since the last usage session 

Session type 
New or continuing session, using a 45 second 

threshold as described in [46] 

Last interaction 
Time (s) since last interaction with the 

LifeTracker application 
Last contribution Time (s) since last data contribution 

Wi-Fi availability Availability of Wi-Fi connection 

Internet availability Availability of internet connectivity 
Network type Cellular network connection type 

Battery level Battery level (%) 

Battery charging Charging state of the smartphone 
Proximity Smartphone screen covered or uncovered 

Physical activity 
Physical activity of the user 

(Google Activity Recognition API) 
Hour Hour of the day 

Day Day of the week 

Table 2. Contextual variables collected by the LifeTracker 

application. 

 

  

Figure 1. Views from LifeTracker application. Top: Schema 

selector (top left) and alert dialog (top right). Bottom: 

Application’s main interface. 



This feedback, in combination with the choice of a logging 

schema, ensures the inherent interest to interact with the 

application. This ensures the study does not simply collect 

‘clicks’ – the data captured is also useful to the user. This 

becomes evident later as we show that users frequently 

interact with the application during the experiment. 

User can interact with the alert dialog in three ways: 1) 

dismiss the dialog (left-most option in Figure 1 top right), 2) 

accept the dialog (right-most option), or 3) launch the 

LifeTracker application (second from right). The choice of 

interaction (dismiss, accept, or application launch) is 

separate from the data contributions, so it is possible for the 

user to e.g. contribute data, but simultaneously specify that 

the dialog was experienced as interrupting (by clicking 

dismiss) or choose not to contribute anything, but accept the 

dialog nonetheless. This allows us to collect context-rich 

data on participant interaction with the dialogs. It should also 

be noted that all interaction choices immediately remove the 

dialog from the view. 

We designed the alert dialogs for brief interactions. Each 

variable requires minimal touch interactions. The variables 

are logged by three input modalities: three-tier scales, 

numeric ranges, or multiple choice - which can require more 

than one interaction. The application actively monitors the 

screen events of the smartphone. An alert dialog is only 

generated if the user is actively using the smartphone (screen 

is in unlocked state) and dialogs are at least five minutes 

apart. No alert dialogs are shown if a phone call is taking 

place and dialogs are automatically discarded after 60 

seconds if left unattended. Upon unlocking the screen or after 

five minutes of continuous use, there is a probability for the 

application to generate an alert dialog. The probability of an 

alert dialog being presented starts at 50% for all participants. 

Depending on the user’s interaction with the dialog, this 

chance will be adjusted for the next dialog presentation (+5% 

upon accept, -5% upon dismissing the dialog). This probably 

has a minimum of 5% and a maximum of 95%. This 

guarantees a lower burden on users who habitually select the 

dismiss option. After an alert dialog is removed, the 

combination of the collected context parameters (Table 2), 

and label (accept, dismiss, or application launch) of the 

response are stored. 

Daily variables are only prompted after 6pm, as it makes 

little sense to ask a user to report incomplete information. 

More dialogs are generated later in the day (after 6pm) than 

during day-time (before 6pm), as users interact with their 

devices frequently and can quickly log all necessary prompts 

during each day-time hour. This is not necessarily the case 

after 6 pm, when the application requires significantly more 

information, e.g., the amount of daily exercise or calorie 

intake. 

EXPERIMENTAL SETUP 

We recruited 48 participants (36 males, 12 females, aged 21- 

53 years old, M = 28.04, SD = 6.71) using mailing lists at our 

University on a first-come first-served basis. Each 

participant was required to own and use a mobile phone with 

Android 5.0 (Lollipop) or newer. The participants had 

varying academic backgrounds, ranging from Humanities 

and Law to Engineering and Natural Sciences. A total 

number of 16 participants had previously used a QS 

application. Previous usage of QS applications was not 

described as a requirement for the study. Understandably, the 

participant group is not a representation of general 

population, as the group consists mostly of young adults and 

university level students. However, as we show later in our 

results, the participant group is more diverse than initially 

thought, and they can provide useful insights to our research 

contributions. As the application could be considered as 

being disruptive to the user’s everyday device usage, we 

compensated each user with 3 Euros for each day of 

participation. 

We invite each participant to a study intake session in our 

lab. Here, we briefly explained the application’s 

functionality, and mitigated users’ privacy and security 

concerns: the data is anonymised, transferred and stored 

securely in a remote server through AWARE’s enforced data 

privacy and security protocols (e.g., encryption certificates, 

compression, and pseudonymous identifiers). Participants 

read and signed a consent form and we clarified any pending 

questions they might have. We demonstrated the 

functionality of the application, the different input methods 

(alert dialogs and the application), and how to interact with 

the alert dialogs. 

We instructed them to use the LifeTracker application as 

they saw fit: we made clear they were not required to accept 

the alert dialogs, neither were they required to log all 

requested data (i.e., all parameters of a set of tracked 

variables). We also asked them to fill a short survey with 

demographic information and answer the following set of 

questions: 

 Q1) “Do you often read the arriving notifications 

immediately?”, on a 4-point scale (Never, Sometimes, 

Usually, Always). 

 Q2) “What kind of applications (categories) do you use on 

your personal smartphone?”, according to a selection from 

Play Store categories, including the “Other” category, 

which allows the user to be more specific using free text. 

 Q3) “Would you describe your smartphone use as active 

(frequent short periods of time), passive (only check when 

you are prompted by e.g. a notification), or mixed?” 

 Q4) “Would you describe yourself as a technology 

enthusiast?”, on a 4-point scale (Definitely not, Not really, 

Somewhat, Definitely). 

After the four-week study period concluded, we invited each 

participant to fill an open-ended post-study survey to gather 

insights on the experienced interruptive nature and their 

experience with the application. We also asked the 

participants to describe “What influenced your decision to 

answer or reject a dialog?” (Q5). 



Our experiment was designed to capture how users interact 

with the presented alert dialogs, rather than how they interact 

with the application itself. While the application offers 

benefits to the user via visualisations and potentially 

increased self-perception, as we did not validate the quality 

of the logged data in this experiment, we opted not to 

investigate our application’s end-user benefits. 

  Dialog accepted 

(non-interrupting) 

Dialog dismissed 

(interrupting) 

Data 

contributed 

A. Non-

interrupting, data 

contributed  

(N = 8,099) 

C. Interrupting,  

data contributed  

(N = 374) 

No data 

contributed 

B. Non-

interrupting, no 

data contributed  

(N = 7,490) 

D. Interrupting,  

no data contributed  

(N = 3,277) 

Table 3. Combinations of class labels based on interaction 

choice and existence of data contribution. 

RESULTS 

Participants interacted with a total of 19287 dialogs (daily 

mean = 13.63, SD = 10.11) and made 17,917 data 

contributions, of which 12,233 (68.3%) originated from the 

alert dialogs. From these 19287 dialogs, 15,434 (80.0%) 

were accepted, 3658 (19.0%) were dismissed, and 195 

(1.0%) resulted in an application launch. A total number of 

8,452 (43.9%) dialogs resulted in data contributions and an 

average of 10.25 daily contributions were made via dialogs, 

verified by a t-test (t(47) = 62.807, p < .05). We aggregate 

395,344 screen events from the participants’ smartphones 

into 82,332 (daily mean = 61.25, SD = 51.57) usage sessions 

- the period between screen becoming unlocked and either 

turning off or returning to locked state - with a mean duration 

of 4 minutes and 16 seconds. Based on the difference 

between the high dialog acceptance ratio (80.0%, N = 15434) 

and the number of data contributions from dialogs (N = 

12,233), we observe that not all accepted dialogs resulted in 

data contributions. 

We therefore created a separate classification scheme for our 

interruptibility analysis. We create a matrix of class labels in 

which we aggregated both the action (user contributed data 

or opted to not contribute) and interaction with the dialog 

(dialog accepted or dismissed), as shown in Table 3. Due to 

technical malfunctioning, 47 dialogs did not have a 

corresponding usage session. As some participants 

habitually accepted all dialogs, either mistakenly or to 

remove the dialog as fast as possible, this broader 

classification offers a more detailed understanding of the 

user’s willingness to contribute data through the dialog.  

This classification labels dialogs as ‘interrupting’ based on 

the user interaction (accept or dismiss), and on the actual 

contribution of data. For example, in class B the user selects 

the accept interaction (indicating it was non-interrupting) to 

hide the dialog but did not contribute any data from the 

dialog. Whether this class was considered as interrupting or 

not, and in what sense – did the user feel the data contribution 

cumbersome or was the dialog generated in an inopportune 

time? - does not have a clear generic answer. In class C the 

user contributed data, but defined the dialog as interrupting 

by hiding the dialog with the “Do not bother me” button. 

Class A and D provide the clearest desired dialogue 

interaction, dialogs that were accepted and data was 

contributed should always be shown (A), or dialogs that were 

always dismissed with no contributed should be always 

deferred (D). For classes B and C this decision is more 

ambiguous. In our analysis, we do not specify which action 

should be taken, but merely report whether each class is 

accurately predicted. An argument could be made for 

combining some of the classes (such as C and D as 

‘interrupting’), but we want to keep the different 

classification so that separate actions (e.g. defer, hide, show, 

and other possibilities) can be mapped separately to each 

class. 

We begin by benchmarking a collection of machine learning 

classifiers and use the whole data set to build a general 

model, per classifier, using Weka [18]. The features are 

described in Table 2 and the class labels are described in 

Table 3. In Table 4 we highlight the best performing 

classifier, Random Forest, which we use in our analysis 

hereafter. Random Forest uses an internal unbiased 

validation measure called out-of-bag (OOB) accuracy [5], 

which removes the need for cross-validation. We use this 

out-of-bag accuracy as a way to measure and compare 

classifier accuracies. Random Forest functions by building N 

Figure 2. Measurement of machine learning accuracy using Out-of-bag error rates for different evaluation approaches and different 

classes (Table 3). 



classifiers with M (max = 15) features each and classifies 

based on a voting mechanism from all N classifiers. To 

optimise the Random Forest size N (number of trees) and the 

number of features M used for each tree, we ran ten passes 

of the classifier for M = [5:10] and N = {250, 500, ..., 2000} 

and select N = 1500 and M = 5 as the optimal parameters. 

 

 

 

Classifier Type Classifier Name Accuracy ROC 

Bayesian NaiveBayes 39.82% 0.7 

Bayesian BayesNet 72.58% 0.783 

Tree J48 74.29% 0.690 

Tree RF 77.29% 0.830 

Rules DT 68.98% 0.717 

Meta Bagging 73.37% 0.770 

Meta RandomSubSpace 75.43% 0.811 

Lazy LWL 51.76% 0.771 

Functions LibSVM 43.09% 0.510 

Functions SMO 61.60% 0.620 

Table 4. Benchmarked machine learning classifiers. 

As our dialog acceptance ratio was high (80.0%), we first 

analysed the distribution of the four classes in our dataset and 

observed that overfitting still exists for the A (42.0%) and B 

classes (38.9%, 81.9% combined). As Random Forests are 

shown to perform poorly for a biased dataset, we mitigate 

this by downsampling all overfitted classes from hereafter 

using random downsampling - half of all samples above the 

mean (of all four classes) are discarded at random. Due to the 

randomisation of discarded samples, we perform multiple 

passes of tests when necessary to minimise the bias due to 

any non-removed samples being overrepresented in the 

training data. 

Predicting User Interactions 

As our study setting aims to understand individual users, we 

do not attempt to simply generalise across our entire dataset. 

Instead, we take two separate approaches to classify user 

actions to understand how the classifier performs for a 

previously unknown user in predicting both whether the user 

would be interrupted by the dialog, and whether the user 

would be willing to contribute data.  

We use two extremities as relative benchmarks. First, we 

trained and evaluated a general model with 20% of the data 

removed and used as testing data (to represent previously 

unknown interaction patterns), and iterated 20 times. Second, 

we evaluated a classifier for each user separately, built solely 

on their own data, and iterated 5 times per user. In this first 

approach, we leverage the leave-one-out method by 

extracting and using each user’s own data as test data, and 

train the model with the user’s own data excluded. This gives 

us insight about each separate user’s fit into a more general 

model, without biasing the training data with instances of the 

user’s own tracked data. This also offers us an assessment of 

how well a general classifier performs for a previously 

unknown user. 

In our second approach, we experimented if a middle ground 

can exist between the two extremities of general and user 

models. The general model assumes we can use all existing 

data as training data for all (new) users, while the user model 

assumes that each (new) user first needs to collect personal  

Classifying 

method 
Description of use 

General 

model 

Classifier built from all available training 

data. 

User model Classifier built from each user’s personal 

data. 

Leave-one-

out 

Each user is extracted from the dataset, and 

used as test data while the remaining dataset 

is used as training data. 

User 

clustering  

Similar users are assigned into clusters, and 

leave-one-out is applied to each user in each 

cluster, with the remaining cluster data as 

training data. 

Table 5. Different classifying methods applied to our dataset. 

training data. We leverage the concept of user types with 

identifiable traits and generated user clusters based on our 

pre-study questionnaire, combined with device usage 

patterns (hours of active smartphone usage). Each cluster 

contains users who share similar pre-determined traits - e.g., 

inquired upon application installation (Q1-Q4, p.5) - and 

information regarding their device use (e.g., “Please specify 

during which period of the day you are most actively using 

your smartphone”). We create k = {4,5,6,7,8} different 

clusters of users and use the leave-one-out mechanism for 

each of the users within these clusters (Table 5).Since we are 

using a separate testing set for each of our cases, we report 

both the internal out-of-bag accuracy for the training data 

(agreement within the users represented by the training data), 

as well as the out-of-bag accuracy of the test data (how well 

the test data, representing a previously unknown user, fits 

into the training data). We first perform the classification for 

general and user models. The internal mean out-of-bag 

accuracy is 79.0% (SD = 0.86%) for general model, and 

80.4% (SD = 7.91) for the user models. The test out-of-bag 

accuracy is 72.6% (SD = 0.36%) for general and 79.1% (SD 

= 16.06%) for user. This showcases how the classifiers are 

in high internal agreement for both types, but personalised 

user models react more accurately to the testing data. 

Next, we evaluate our first approach, the leave-one-out 

method. The out-of-bag accuracy is similar to the general 

model (M = 78.7%, SD = 0.27%, 48 trials). This is expected, 

as the training data is similar in both cases. However, the test 



out-of-bag accuracy is considerably lower (M = 68.1%, SD 

= 12.7%). This highlights the problem of fitting previously 

unknown users to a general model, and raises the need for a 

solution that 1) can be considered accurate, and 2) does not 

require the collection of training data before being useful. 

Our second approach aims to mitigate these issues by 

constructing user profiles. We utilise demographic 

information (age, sex), the pre-study survey (Q1-Q4, p.5), 

and each user’s device usage patterns (usage frequency 

during different hours of day) to form user groups with a total 

of 40 dimensions, using the k means clustering algorithm. 

The choice of clustering dimensions was purposely selected 

outside of machine learning features to reduce the bias of 

clustering choices on the actual classifier. According to these 

dimensions, from the best performing configuration (k = 7) 

we recognise identifiable characteristics of similarly acting 

groups, that share very similar traits to groups in [49], e.g., 

users who frequently use their devices during night, or users 

who leverage smartphone capabilities in their work. Cluster 

3 consists of users (N = 9) with very balanced characteristics, 

without any clear, extreme, or distinguishable extremities. 

Users in clusters 6 and 7 also share no clear distinguishable 

traits, and the clusters consist of less than five users and are 

thus discarded from now on. These users with no clear 

characteristics contribute 33% of all the users in our study 

setting. These characteristics could still be identified 

programmatically using black box methodology – i.e., by 

creating clusters without clearly distinguishable 

characteristics of the clusters. Following user groups can be 

identified with distinguishable characteristics: 

Cluster 1: Casual Users (10 users): Users in this group 

report the most passive device usage style, low tech 

enthusiasm, and slowest response rate to notifications. Their 

device use is more frequent during evening (8-10pm) than 

any other group. Also, this group has the highest (.50 > .25 

for all participants) female ratio. 

Cluster 2: Social Chatterers (7): The youngest age group 

(M = 20.85 < 28.04 for all, SD = .38), and all users are male. 

Users report frequent usage of communication apps, but do 

not use many other applications. Smartphone usage is 

balanced over the duration of the day (9am to 8pm), users 

quickly respond to notifications, and are likely to consider 

themselves tech enthusiasts.  

Cluster 4: Night Owls (7): Most likely to use their 

smartphones between 10pm and 8am. This group likely 

consists of people with families abroad in different time 

zones. Users in this group are likely to use communication 

applications and otherwise displays a more mixed usage 

style, with low versatility in application usage. 

Cluster 5: Work On-the-go (8): These users report an 

active usage style of their smartphones, respond to 

interruptions quickly, and report using e.g. finance 

applications frequently. Users in this group also have a daily 

rhythm that does not involve smartphone usage after 10pm. 

Demographically, this group is mostly male (.75 > .25 for all 

participants) and is older, on average, than the other groups 

(M = 35.6, SD = 2.69). 

The leave-one-out method was then applied to each cluster 

and the results are visualised in Figure 3 along with the test 

results of previous methods (general model, user model, and 

the leave-one-out). The clustering methods average between 

80.6% and 81.9% (SD = 2.8% to 3.9%) for out-of-bag 

accuracy and between 62.7% and 65.3% (SD = 13.0% to 

16.5%) for test out-of-bag accuracy. The primary contributor 

Figure 3. Random Forest accuracy for different machine 

learning evaluation approaches, for both the test set and the 

training set. 

to reduced accuracy is likely the reduced amount of overall 

data (most clusters have between 8 and 15 users, which 

correlates to roughly 70-85% reduction in training data) for 

the classifier when using the clustering approach. The 

increased internal validation within the clusters is visible, as 

a t-test on cluster configuration k=7 shows significantly (p < 

.05, t = 3.20, df = 151.35,) higher mean accuracy (81.9%, SD 

= 2.8%) when compared to the user models (80.4%, SD = 

7.9%). The mean is higher for all cluster configurations, but 

the results are not significant for other k values. Our main 

finding is that within all these cluster configurations, the 

groups of users selected using external factors performed as 

well as or better than the highly personalised user models.  

Preventing Unwanted Interruptions 

As our class labels indicate both user’s willingness to 

contribute data and their preference of interacting with an 

alert dialog, we are also able to infer the likelihood of a 

classifier preventing an unwanted dialog from being 



generated. In addition to the overall accuracies of the 

classifiers, the error rates within different classes are also 

provided by the Random Forest classifier. The results for the 

same groups are visualised in Figure 2. All the approaches 

are accurate in predicting both the classes where users 

selected the accept interaction (classes A and B) (M = 14.9%, 

SD = 9.1% for A; M = 23.0%, SD = 9.6% for B), and manage 

to reduce 26.2% (SD = 8.8%, user model excluded) of the 

unwanted cases (D class indicating no data was contributed 

and the user dismissed the dialog). The user models are 

increasingly less likely (M = 62.0%, SD = 14.8%) to 

accurately predict the D class, which is likely due to several 

users having the A and B classes overrepresented in their 

datasets (accepting all or a majority of presented dialogs). 

The C class is problematic to predict accurately, but also 

vastly underrepresented in the entire dataset (N = 374, 1.9%), 

and unlikely to reduce the overall accuracy of any approach. 

Similar to the overall accuracy, the user clusters are in higher 

agreement for the D class than other approaches (M = 24.5% 

< 26.2%, p < .05, t = 8.68, df = 180.33 after removing 

outliers) according to a t-test, which can also be considered 

the most important class for preventing unwanted 

interruptions. 

Understanding Context 

To further understand how and why our users interact with 

the dialogs in specific ways, we use feature extraction to gain 

insights on each factor. MDA (Mean Decrease Accuracy) 

shows the impact of each individual feature on the accuracy 

of the classifier if the feature is removed, and MDI (Mean 

Decrease Gini) is used as the impurity function. From the 

features of the k=7 cluster’s classifier, we can also identify 

characteristics of the individual clusters that differ from the 

general model according to both tests (Mean Decrease 

Accuracy and Mean Decrease Impurity). We report 

alterations from the general model where both tests are in 

agreement and the features were ranked in the top half of the 

features. 

Overall, the classifiers that used user clustering understood 

changes in physical activity and proximity in more detail, 

and individual clusters put weight on features such as 

network type and hour (“Casual Users”, Cluster 1), Wi-Fi 

and internet availability (“Night Owls”, Cluster 2), and 

session duration (“Work On-the-go”, Cluster 5). Also, while 

the general model used the dialog delay as the most 

important feature, four out of five clusters found dialog delay 

to be less impactful. The same applies for session type (new 

or continuing session). The full averaged rankings for the 

Cluster (k = 7) and the general model are visualised in Figure 

4.  

In our post-study survey, we gathered insights from the 

participants regarding their experiences with the LifeTracker 

application. Q5 was an open-ended question, so we 

categorised the main reasons (one or more) for both 

accepting or dismissing a dialog. Ten answers were 

discarded from the categorisation due to low quality of the 

answer or the lack of proper focus. In eighteen (54.5%) 

answers the choice of interaction was due to a more 

important priority task being performed on the smartphone 

(P36: “Most of the occasions when I rejected a popup were 

such that another application needed my concentration at 

that exact moment.”). One participant reported the physical 

activity (P12: “I would reject the dialog if it came during 

work or exercise”), four reported on the time of the day, three 

on the surrounding physical context, and two due to bad 

mood.  

The majority of responses only listed reasons for dismissing 

a dialog. Three responses listed reasons specifically for 

accepting a dialog, two of these reported the brief 

interactions with the dialogs as reasons for accepting it (P17: 

“If the question was just a button to select one option I mostly 

answered them because it was nearly as quick as rejecting a 

dialog.”) and one participant (P16) lack of anything better to 

do. The responses in the ‘priority task’ category can also be 

perceived as extensions of “lack of anything better to do”. 

Figure 4. Feature rankings for MDA (Mean Decrease Accuracy) and MDI (Mean Decrease Impurity) for cluster k = 7. 



Some reasons correspond to the characteristics of the dialogs 

(brief interactions), while some correspond to the features 

used in the machine learning classifiers (e.g., hour, physical 

activity, and lack of anything better to do are reflected in 

session type and duration). 

DISCUSSION 

We set out to study the interruptive nature of an input method 

designed to leverage user’s spare time and reduce the burden 

required to make data contributions. These elements are key 

when motivating long term usage of quantified-self 

applications. Understanding of human interruptibility is 

crucial when using potentially disrupting data input methods. 

We present results for an interaction method designed to 

fulfil specific requirements (Table 1) that are sculpted to 

reduce the cognitive load of the input method [27], decrease 

interaction time [43, 44, 46], and increase the quality of 

logged data [30]. We also attempt to understand both 

individual users and generic user types [48, 49] in order to 

enable applications to understand user’s preferences without 

reliance on general models (often incorrectly assuming that 

all users behave similarly) or requiring an extensive training 

period to work correctly. 

Contributing Data via Alert Dialogs 

Overall, the number of dialogs (13.63, SD = 10.11) presented 

to our participants during each day of the study likely caused 

a burden on their smartphone usage, since the application 

only applied a very simple chance filter on the presentation 

of dialogs. However, it is necessary to prompt a user of a 

quantified-self application numerous times on a daily basis 

to ensure sufficient amount of data contributions, in order to 

generate meaningful insights. Considering the amount of 

general smartphone usage sessions each user participated in 

on a daily basis (M = 61.25, SD = 51.57), participants were 

not constantly interrupted but still frequently prompted. 

Truong et al. [43] report an average of 49.83 daily 

contributions (compared to our 10.25) and [44] report a 

37.4% task completion rate, but no number for daily 

contributions. However, neither approach considered a ‘skip’ 

option so the users were always required to contribute in 

order to unlock their device. Results of the aforementioned 

study state that 44% of the study’s participants felt that a skip 

option would have been necessary [44]. In [44], three of the 

ten participants also report that the forced data input on 

phone unlock significantly decreased the frequency of their 

phone unlocking. The requirement of repeated contribution 

and lack of a bypass method can significantly diminish the 

quality of the data [30], and can cause unnecessary burden to 

the user. The unlock screen interface also prohibits the user 

from using passwords or secret gestures to securely unlock 

his or her device - a limitation neither [30] or [44] addresses. 

Minimising the amount of daily interruptions while 

maximising the amount of data contributions is completed by 

deferring interruptive prompts, and minimising the cognitive 

load of the input method.  

Dialogs and the use of lock screen as an input mechanism 

inherently reduce the cognitive load by design, so the 

remaining problem is to reduce the burden to the user, and 

the number of interruptions. Predicting the interruptive 

nature of an input method should be applied to all prompts, 

and the two methods (self-report within the unlocking 

interface, or prompting the user after unlocking the device) 

can be used in tandem, as long as the user is not 

overburdened and prompts are presented appropriately. 

Previous work has addressed this challenge via either general 

models; use of C4.5 machine learning classifier to predict 

acceptance of notifications attains up to 77% accuracy [39], 

and the InterruptMe library [35] offers up to 70% precision 

and recall. [23] uses decision-theoretic (DT) models to create 

user models that offer an increase in accuracy over a random 

probing mechanism, but at the cost of significantly reduced 

opportunities for self-reports. Additional take-away from our 

results is that the interrupting nature should not be derived 

directly from the interactions - as the ‘non-disrupting’ classes 

(A and B) were overrepresented within the interactions. 

When available, external measurements - like in our case 

looking at the existence of a data contribution from a dialog 

- can be more reliable as users can simply select any available 

interaction to remove a disrupting prompt [7]. Based on 

results in previous work and the accuracy of our benchmark 

general model, a more accurate method is clearly needed, 

that understands user’s preferences. 

Understanding Personal Preferences 

To understand in more detail how different machine learning 

classifiers perform for previously unknown users, we 

leverage the leave-one-out cross validation method. Users 

are detached from the dataset one by one, the remaining data 

is used as the training set, and the detached user’s data as a 

testing set when applicable. To our knowledge, this method 

has not been previously used as a method to understand 

users’ personal preferences and users’ fit into general 

models. As hypothesised, the leave-one-out method proves 

less accurate (68.1%) than the general model (72.6%) with 

the testing sets, and signifies how a general model is not 

always applicable to the individuals within a general 

population. This especially applies in situations where 

personal usage traits vastly differ, such as for smartphone 

usage [10, 46-49]. These personal differences were evident 

in our study, even though our participant group was quite 

homogenous by nature, in terms of sociological status, level 

of education, and age.  

We use features (Table 2) that attempt to both understand the 

user’s external context (physical activity, time), and 

smartphone usage (frequency of usage sessions and 

interactions). The appropriateness of the selected features in 

differentiating between users is apparent, as the personalised 

user models are more accurate (M = 80.4%, SD = 7.9%) than 

the general or leave-one-out, even with the reduced available 

training data. In addition, the responses from our final 

questionnaire following the four-week usage period 

correspond to the selected features. Users reported frequently 



dismissing the alert dialogs due to their physical activity, 

time of day, or type of device usage session - factors that 

directly correspond to the features selected for our machine 

learning classifiers and that are previously used as significant 

features [20, 35, 39]. This allows us to conclude that the 

choice of features accurately reflected the user’s interaction 

behaviour. 

However, both the use of general models and personalised 

user models have inherent problems. General models have 

poor fit for individual users with specific usage and behavior 

traits. Falaki et al. [10] report that smartphone users differ by 

at least one or more orders of magnitude in their device usage 

patterns. On the other hand, the use of personalised models 

requires significant amount of collected training data - which 

in turn requires time. We pick up on the recent trend [48, 49] 

of identifying user groups and use this concept to create user 

clusters based on external user reported features (e.g., 

description of smartphone use, usage patterns throughout the 

day). We selected these dimensions for the clusters in order 

to showcase that applications can leverage user provided 

information to form preset configurations for new users of 

which the application or system has no prior information. 

The generated clusters had stronger inner agreement than the 

classifiers constructed from other training datasets (Figure 

3), indicating the validity of this approach. The cluster-based 

classifiers were also most accurate in preventing unwanted 

interruptions (Figure 2) - a key measurement considering the 

interrupting nature of alert dialog as an input mechanism. 

Feature ranking offers a glimpse inside the black box 

implementation of the Random Forest classifier, and we can 

observe how the different identifiable characteristics of 

clusters affect the predictions (Figure 4), e.g. the differences 

in physical activity patterns (MDI ranking in Figure 4) are 

more detailed than in the general model. As for the users 

within clusters, the “Work On-the-go” ranked session 

duration higher than in the general model - this archetype is 

involved in frequent short usage sessions, so interrupting this 

type of user during messaging or an important work-related 

call is likely unwanted. “Night Owls” ranked Wi-Fi and 

internet availability higher, compared to other groups. This 

group prioritises their longer device usage sessions - ones 

where they are less interrupted - to occasions where they 

have proper connectivity. And the “Casual Users” group put 

more weight on hour, indicating that as they use their device 

sparingly throughout the day, they prefer to be interrupted 

when it is most convenient to them (e.g., during the evening 

hours). The effect of these fine-grained pieces of information 

become apparent through the way the classifiers function and 

take different features into consideration for different user 

types. These user clusters can also be generalised to an 

extent, considering extremely similar user clusters were 

generated in [49], consisting of “Night communicators”, 

“Screen checkers”, who are quick to respond to incoming 

prompts, and cluster of “Evening learners”, similar in 

characteristics to our “Casual users”. We do not claim that 

our findings are perfectly applicable to the general 

population. We did not analyse the characteristics of roughly 

third of our users (three clusters) as their usage traits were 

difficult to distinguish sufficiently, or the groups were 

considered too small. However, if the process of matching 

users to user groups is done programmatically, the 

automation process could also efficiently match these types 

of users to predetermined groups. 

Our analysis is, to the best of our knowledge, the first attempt 

to leverage this type of user differentiation, based on a 

mixture of self-reported and sensor logged smartphone usage 

behaviour. The cluster-based approach resulted in the highest 

accuracy (Figure 3), and was most likely to reduce unwanted 

interruptions (Figure 2), and had the highest prediction 

accuracy within the training data set (Figure 3). The 

prediction accuracies also show improvements over previous 

work [35, 39]. These results are encouraging and we argue 

this research can pave the way for intelligent applications 

that can be personalised more effortlessly. Most importantly, 

these applications no longer require extensive learning 

periods or manually applied configurations. By inquiring 

about the usage habits of new users, their requirements for 

the application, and their preferences, it becomes possible to 

match this information with an existing user base. 

Applications are thus able to extract pre-generated group 

models for each new user. 

Limitations and Future Work 

Although our application is not designed to merely collect 

data, we focus our work on the data collection process, and 

do not consider the quality of the logged data or what the 

end-user benefits of using our application were. 

Additionally, while our participant group was homogenous 

in terms of demographics, they showed diversity in how they 

use their smartphones, and our main aim was to validate our 

proposed approach. 

The machine learning models we use were not evaluated in-

the-wild, but our use of leave-one-out method offers us 

insight in how accurately the classifier would react to 

unforeseen events. Our aim is to replicate our approach in a 

longer field study in the future. This would also verify the 

impact of our approach in long-term application use. 

CONCLUSION 

QS applications habitually suffer from abandonment of use 

and often the motivational methods aimed to increase the 

longitude of use suffer from lack of data. We conducted a 

four-week long user study with 48 users and analyse the use 

of potentially intrusive on-screen alert dialogs as self-

reporting mechanisms. We identify five distinct user groups, 

based on features external to their interactions, and showcase 

how the Random Forest classifier can accurately predict user 

interruptibility within these groups.  

Personal applications should not rely on generalised models, 

as differences in smartphone use between users have been 

brought up repeatedly in literature, and also in the results we 

have presented in this work. Different user types are more 



active during different times of day, have different usage 

styles in terms of usage session frequency and duration [46, 

47], prefer different types of applications [48, 49], and 

interact with their devices differently [10]. This leads to the 

inclination to model users either individually, or within 

specified user type groups. Applications can leverage our 

approach to use historical data from their user base as 

training data for new users, by matching characteristics of 

new users to existing user groups. However, users should not 

be overburdened by constantly requiring data contributions, 

especially if multiple applications leverage the same method 

and compete for user’s attention. 
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