
Predicting Interruptibility for Manual Data Collection:

A Cluster-Based User Model

Aku Visuri

Center for Ubiquitous Computing

University of Oulu

{first.last}@oulu.fi

Niels van Berkel, Chu Luo,

Jorge Goncalves

The University of Melbourne

{n.vanberkel;chul3;jorge.goncalves}@unimelb.edu.au

Denzil Ferreira

Center for Ubiquitous Computing,

University of Oulu, {first.last}@oulu.fi

Vassilis Kostakos

The University of Melbourne

vassilis.kostakos@unimelb.edu.au

ABSTRACT

Previous work suggests that Quantified-Self applications can

retain long-term usage with motivational methods. These

methods often require intermittent attention requests with

manual data input. This may cause unnecessary burden to the

user, leading to annoyance, frustration and possible

application abandonment. We designed a novel method that

uses on-screen alert dialogs to transform recurrent

smartphone usage sessions into moments of data

contributions and evaluate how accurately machine learning

can reduce unintended interruptions. We collected sensor

data from 48 participants during a 4-week long deployment

and analysed how personal device usage can be considered

in scheduling data inputs. We show that up to 81.7% of user

interactions with the alert dialogs can be accurately predicted

using user clusters, and up to 75.5% of unintended

interruptions can be prevented and rescheduled. Our

approach can be leveraged by applications that require self-

reports on a frequent basis and may provide a better

longitudinal QS experience.

Author Keywords

Smartphones; Self-reports; Quantified-self; Interruptibility

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI):

Miscellaneous

INTRODUCTION
Quantified-Self (QS) applications are often criticised for

lacking sustained long-term use [17, 24, 45]. While most

users of QS applications start with an inherent motivation for

self-monitoring, their engagement tends to decrease over

time and the applications are subsequently abandoned. User

motivation can be positively affected with user-driven

insights [4], but collecting sufficient amount of data to

generate such insights can introduce a reliance on manual

data collection [3]. Choe et al. [8] recently highlighted the

frequent requirement of self-reports in self-monitoring

applications. Fritz et al. [15] report that the higher the effort

to use an application, the shorter the lifetime of the

application. As QS relies on continuous tracking [42], the

issues presented here are core challenges within this

application space. More critically, applications’

abandonment often leads to the users returning to their old

habits in the end [24].

Bentley et al. [3] use Android notifications to remind users

to log data and increase the quantity of logged data. Our

approach extends this work by presenting opportunistically

displayed on-screen alert dialogs, shown during active

smartphone use. These dialogs enable the user to log data

directly, and do not require the user to launch a separate

application, which is often the case with notification

reminders. Notifications have some drawbacks as they can

be presented to user even when the user is not present, and

can exist on the background. Dialogs and notifications differ

as notifications do not require immediate interaction from the

user. The requirement for interaction with a dialog can,

however, be experienced as interrupting. We attempt to

mitigate this side-effect by pre-emptively predicting their

likelihood of interruption. Specifically, we infer user

interruptibility by reconstructing the in-situ context of the

user using multiple sensors on their smartphone in real time.

The field of inferring human interruptibility using sensors is

widely explored under the umbrella of interruptibility [14]:

recognising opportune moments to triggering notifications

[22, 35, 39], effect of interruptions on quality of logged data

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

MobileHCI '17, September 04-07, 2017, Vienna, Austria

© 2017 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-5075-4/17/09…$15.00
http://dx.doi.org/10.1145/3098279.3098532.

[30], as well as the effect of interruptions on interactions and

task completion [27].

The reliance on continuous data logging inherently increases

users’ compliance effort and may overwhelm them if

performed over extended periods of time. We propose a

method to reduce the data logging burden. We base our

method on the frequency and brief nature of the large

majority of smartphone usage sessions [11, 41, 46], as well

as the frequent non-task oriented nature of smartphone usage

[6, 28, 38]. By transforming these recurrent moments of brief

smartphone usage (e.g., ‘killing time’ [6]) into data

contributions for QS applications, the quantity of logged data

increases while the effort associated with data input is

reduced. We analyse different smartphone user usage

patterns - frequency and duration of use [46, 47], and

interaction styles [10] - to form groups of users with similar

traits, improving the prediction accuracy of presenting alert

dialogs in an uninterrupting fashion.

We present the findings of a 4-week long study measuring

alert dialogs’ interruptibility and applicability in a QS

context. Specifically, we deploy a mobile QS application

which provides on-screen alert dialogs as an input

mechanism for data logging. A total of 48 participants used

our application for life-logging and we measured their

interactions and attitudes towards the alert dialogs. We

conduct a post-study survey to gather qualitative feedback.

We evaluate several machine-learning classifiers’ overall

performance and power to minimise interruptions. We

demonstrate the feasibility of how machine learning

classifiers can decrease the frequency of interrupting

prompts with the use of on-device sensors that measure the

surrounding context, and the context of device usage. By

clustering users into groups, we improved classifiers’

accuracy without a required training period. The use of

frequently occurring input prompts can benefit quantified-

self applications in enabling opportunistic self-reported data

input, crucial for longitudinal use.

RELATED WORK

The field of interruptibility research aims to determine a

user’s availability, readiness, and interest in a given content

element [14]. Social and behavioural cues allow humans to

assess a person’s level of interruptibility [2, 19]. In 2005,

Fogarty et al. [14] found that relatively simple external

sensors can be used to successfully construct a model on a

person’s interruptibility. However, these sensors must be

installed in the environment of the user pre-emptively (e.g.,

to detect if a conversation is taking place).

Untimely interruptions affect the user in various forms, e.g.

increased cognitive and information overload [34], delayed

task completion [27], or reduced quality of logged

information [30]. Okoshi et al. [34] showcase two methods

to successfully address the problem of disruptive

interruptions: 1) rescheduling interruptions to arrive at

another time, and 2) mitigating the number or frequency of

such interruptions. Successful timing of interruptions has a

positive effect on both time management and task efficiency

[22].

Using machine learning to detect interruptibility has proven

to be a successful method in the past. Interruptibility has been

assessed e.g., through analysing both mobile phone sensor

data (e.g., device posture [39], acceleration sensor [20]),

wearable devices with embedded sensors [25], and high-

level data such as application usage patterns or location data

[35, 38, 39]. From select features, predictions can be made

regarding the user’s interruptibility, e.g., using activity

breakpoints [33], or rules [29] to decide when and what kind

of push notifications to present to the user. A variety of

machine learning classifiers exist to create a general users’

interruptibility model: a) trees, such as Random Forests [5]

or C4.5; b) Bayesian classifiers, such as Naïve Bayes; or c)

Support Vector Machines (SVM), such as LibSVM. For

these models, researchers select similar classifier features,

e.g., Poppinga et al. [39] explored the correlation between

different smartphone sensors and user interruptibility, where

time of day and screen coverage are good predictors. Pielot

[36] analysed the availability of mobile phone users to accept

incoming calls using a variety of contextual data (e.g.,

physical activity, screen status, day of the week) in addition

to similar hardware sensors.

Users have distinguishable traits of device usage in terms of

session frequencies and durations [46, 47], application

selection [48, 49], and interactions [10]. Higher-level

contextual features are able to construct the user’s personal

preferences in detail. Pielot et al. [37] model the user’s

attentiveness to messages from instant messaging

applications using past behavioural usage data from these

applications. When analysing the user’s level of boredom

[38], additional measures are analysed to obtain a higher

degree of user context: audio jack state, airplane mode status,

network activity, screen orientation, and current foreground

application. On the other hand, recent work has put more

focus on modelling user groups to achieve higher accuracies.

Zhao et al. [49] and Welke et al. [48] analysed application

usage and inferred several distinct user types with

identifiable characteristics.

Previous work has shown the disruptive nature of

smartphone information push methods, such as notifications

[40]. The distractive nature is relevant for those applications

or services that aim to use push methods to collect user data

- for example applications in the area of QS or experience

sampling. Mehrotra et al. [30, p.1] highlight this challenging

balance for ESM studies: “obtaining high quality data with

ESM is challenging, as users may fail to respond honestly,

or may even ignore the questionnaire prompts if they

perceive the study as too burdensome”. To address the issue

of burdensome notifications, researchers have explored

various potential solutions. Context inference is used to

assess the user’s interruptibility in both the current and future

contexts to decide the best time for interruption in terms of

quality of the content of the response [30]. Hsieh et al. [21]

display feedback to participants following an ESM

questionnaire to make the submission of data more

personally relevant. Leiva et al. [27] explore preventive

methods, such as preparing the user to leave the current task

before the interruption, and ways to guide the user back to

the task by e.g. replaying the UI interactions prior to

interruption.

Quoting Okoshi et al. [34, p.2]: “Rather than forcing users

to manually check whether new information is available,

notifications instead push new information to users, resulting

in faster and increased awareness.” The authors state that

‘interruptive overload’ can either be targeted through a)

scheduling (deferring) notifications, or b) mitigation of the

amount of notifications. As an end result, the Attelia

middleware for notification management [34], reduced the

cognitive load of the arriving notifications by 46%, and

increased the response times (i.e., users were quicker to

interact with the notification) by 13%. Here, we aim to use

machine learning to detect opportune moments for

quantified-self data input (as alert dialogs), reducing the

burden of data input requests and increase the response

times.

OPPORTUNE INTERRUPTION USING ALERT DIALOGS

In an attempt to solve the issue of users being burdened by

the requirement of continuous logging [3, 15, 42], we argue

that by inferring situations in which the user is not actively

performing a task, opportune moments for data contributions

can be identified. Brown et al.’s [6] large scale study of

mobile device use recognised three use types, where the user

is not actively performing a task:

 Occasioning use is initiated by the device (e.g. an arriving

notification from a messaging application) and creates a

timeframe where the user can naturally attend to the device.

 Filling time enables otherwise ‘dead time’ to be put into

use (e.g., enjoying a video game or browsing social media

via the smartphone).

 Micro-breaks, similar to micro-usage of application use

[11], are brief sessions of device usage where the user

shortly interrupts his main tasks or activity.

For all of these usage types, users do not necessarily have a

clear task during the usage session - it is therefore less likely

that the user experiences interruption when presented with an

input prompt. Van Berkel et al. [46] analyse smartphone

usage sessions based on sensor data tracked from

participants’ devices, and categorise usage sessions into

continuing and new sessions, and these sessions indicate

either chosen or forced breaks in smartphone use. By

identifying otherwise unproductive usage sessions with in-

situ context of the smartphone, we aim to partially transform

these sessions into self-report data contributions (i.e.,

effective quantified-self data).

One must keep the required interaction with a prompt short

[43, 44]. Thus, a method needs to be developed that is a)

quick to interact with, and b) when necessary, easy to

dismiss. Approaches by previous work that leverage brief

interactions are Slide to X [43] and Twitch crowdsourcing

[44], both of which utilise the smartphone unlocking event

to collect data. Our chosen interaction modality is an alert

dialog - used predominantly on desktop environments and

web browsers, but sparingly on smaller screens. When used

for the presentation of information, alert dialogs are

habitually ignored [7] and also found to be disruptive [31].

Akhawe et al. [1] performed a large-scale assessment of

browser warning dialogs and conclude that the design of the

dialog window has a tremendous impact on both the user

experience and user’s responsiveness to the dialog.

Two common issues with mobile information presentation

methods are cognitive overload [27, 40] and interruption of

the user’s main task. We believe that, if presented and timed

carefully, an alert dialog can minimise both issues. Alert

dialogs are occasionally used in tandem with the Experience

Sampling Method [26], and the response rates when used in

this way are generally quite high. For example, Van Berkel

et al. [46] report 83.78% response rate and average response

time of less than 3 seconds. The interruptive nature of push

notifications is also diminished when the source of the

interruption is deemed as beneficial to the user [40]. We

argue that this is also the case for QS applications, and the

interruptive nature of prompts originating from these

applications is reduced.

Our hypothesis is that, by leveraging naturally appearing

periods of smartphone use where the user is not actively

performing a task (i.e. aimlessly juggling applications while

bored [6, 28]), we can transform such usage sessions into

data contributions. This can increase the quantity and quality

of the data gathered by QS applications and potentially

motivate users to continue self-monitoring, if the user’s

interruptibility can be predicted before deciding whether or

not to present the input prompts. Alert dialogs can potentially

fill these conditions based on their inherent properties,

described in Table 1.

Predicting Interruption In-Situ

To present alert dialogs at appropriate times (R2), we must

be able to predict whether an alert dialog would be

considered interrupting in the current context. Context is

described by properties such as physical elements of the

surrounding environment [9]. When considering a

smartphone, context also includes the internal measured

through the device, e.g., the chosen application or battery

status. Based on the understanding of mobile context, and the

contextual information logged by previous work [35-39], we

capture those contextual factors which have been shown to

impact the user’s response to interruptions – factors related

to usage session, battery, application use, network status,

physical activity, and time of the day. An important element

of alert dialogs is the requirement for interaction, and as the

alert dialog is presented on top of any other interface

elements, it shifts the user’s focus from a previous task. This

can result in high probability of interruption.

 Description

 R

eq
u

ir
em

en
ts

 R1 Alert dialogs can be interacted with very

briefly.

R2 Alert dialogs can be presented to the user at

appropriate times.

R3 Alert dialogs are easy to remove.

R4 Alert dialogs can be quickly generated

(users prefer no loading screens [16, 32]).

Table 1. Conditional requirements for effortless self-reports.

Due to the brief interaction times associated with alert

dialogs, we assume that the context of the event does not

change during the interaction, according to conditions R1

(brief interactions) and R3 (quick dismissal). In our

application, user can interact with the alert dialog by

accepting or dismissing the dialog, and by either contributing

data or opting not to contribute. The response interaction

label is logged with the in-situ context. We then proceed to

analyse the dataset in terms of whether the context of an

instance could predict the interactions with the dialog. We

argue that the cost of unwanted interruptions is higher to the

user than the cost of potentially missed data contributions.

Thus, our aim is to minimise the number of events where a

dialog was generated but ultimately experienced as

unwanted.

LIFETRACKER APPLICATION

Based on our four requirements (Table 1), we developed a

QS application called LifeTracker to collect data using alert

dialogs as the go-to method, and to collect user interactions

with the alert dialogs. LifeTracker logs self-reported data,

and sensor data logged on the background using the AWARE

framework [12, 13] to collect the in-situ context of each

presented dialog and securely synchronise the data to a

remote server. To infer the context, we collect the sensor data

motivated by previous work, data related to the usage

session, and data related to the interactions with the

LifeTracker application. We choose not to gather privacy

sensitive information, such as application use or location

data. Summary of tracked information is listed in Table 2.

The application has three different logging schemas (i.e., set

of tracked variables) custom-designed for different types of

self-monitoring needs: mood, physical exercise, and flu-like

symptoms (Figure 1 top left). Each schema has multiple

variables that can be logged – not mandatory – once per hour

or once per day. For example, the exercise schema allows

participants to log their number of stretching sessions (daily)

as well as their experienced level of dehydration (hourly).

The data is captured using the alert dialogs (Figure 1 top

right), or by explicitly launching the application (Figure 1

bottom).

In addition to collecting data, the LifeTracker application

also enables the user to view historical data using

visualisations of weekly, daily, and hourly granularity.

Variable Description

Data contribution Data logged in the current usage session

Dialog delay Delay (s) of dialog generation since device unlock

Session duration Duration (s) of the usage session

Call Call during the current usage session
No. of sessions Number of usage sessions in the last five minutes

Last session Time (s) since the last usage session

Session type
New or continuing session, using a 45 second

threshold as described in [46]

Last interaction
Time (s) since last interaction with the

LifeTracker application
Last contribution Time (s) since last data contribution

Wi-Fi availability Availability of Wi-Fi connection

Internet availability Availability of internet connectivity
Network type Cellular network connection type

Battery level Battery level (%)

Battery charging Charging state of the smartphone
Proximity Smartphone screen covered or uncovered

Physical activity
Physical activity of the user

(Google Activity Recognition API)
Hour Hour of the day

Day Day of the week

Table 2. Contextual variables collected by the LifeTracker

application.

Figure 1. Views from LifeTracker application. Top: Schema

selector (top left) and alert dialog (top right). Bottom:

Application’s main interface.

This feedback, in combination with the choice of a logging

schema, ensures the inherent interest to interact with the

application. This ensures the study does not simply collect

‘clicks’ – the data captured is also useful to the user. This

becomes evident later as we show that users frequently

interact with the application during the experiment.

User can interact with the alert dialog in three ways: 1)

dismiss the dialog (left-most option in Figure 1 top right), 2)

accept the dialog (right-most option), or 3) launch the

LifeTracker application (second from right). The choice of

interaction (dismiss, accept, or application launch) is

separate from the data contributions, so it is possible for the

user to e.g. contribute data, but simultaneously specify that

the dialog was experienced as interrupting (by clicking

dismiss) or choose not to contribute anything, but accept the

dialog nonetheless. This allows us to collect context-rich

data on participant interaction with the dialogs. It should also

be noted that all interaction choices immediately remove the

dialog from the view.

We designed the alert dialogs for brief interactions. Each

variable requires minimal touch interactions. The variables

are logged by three input modalities: three-tier scales,

numeric ranges, or multiple choice - which can require more

than one interaction. The application actively monitors the

screen events of the smartphone. An alert dialog is only

generated if the user is actively using the smartphone (screen

is in unlocked state) and dialogs are at least five minutes

apart. No alert dialogs are shown if a phone call is taking

place and dialogs are automatically discarded after 60

seconds if left unattended. Upon unlocking the screen or after

five minutes of continuous use, there is a probability for the

application to generate an alert dialog. The probability of an

alert dialog being presented starts at 50% for all participants.

Depending on the user’s interaction with the dialog, this

chance will be adjusted for the next dialog presentation (+5%

upon accept, -5% upon dismissing the dialog). This probably

has a minimum of 5% and a maximum of 95%. This

guarantees a lower burden on users who habitually select the

dismiss option. After an alert dialog is removed, the

combination of the collected context parameters (Table 2),

and label (accept, dismiss, or application launch) of the

response are stored.

Daily variables are only prompted after 6pm, as it makes

little sense to ask a user to report incomplete information.

More dialogs are generated later in the day (after 6pm) than

during day-time (before 6pm), as users interact with their

devices frequently and can quickly log all necessary prompts

during each day-time hour. This is not necessarily the case

after 6 pm, when the application requires significantly more

information, e.g., the amount of daily exercise or calorie

intake.

EXPERIMENTAL SETUP

We recruited 48 participants (36 males, 12 females, aged 21-

53 years old, M = 28.04, SD = 6.71) using mailing lists at our

University on a first-come first-served basis. Each

participant was required to own and use a mobile phone with

Android 5.0 (Lollipop) or newer. The participants had

varying academic backgrounds, ranging from Humanities

and Law to Engineering and Natural Sciences. A total

number of 16 participants had previously used a QS

application. Previous usage of QS applications was not

described as a requirement for the study. Understandably, the

participant group is not a representation of general

population, as the group consists mostly of young adults and

university level students. However, as we show later in our

results, the participant group is more diverse than initially

thought, and they can provide useful insights to our research

contributions. As the application could be considered as

being disruptive to the user’s everyday device usage, we

compensated each user with 3 Euros for each day of

participation.

We invite each participant to a study intake session in our

lab. Here, we briefly explained the application’s

functionality, and mitigated users’ privacy and security

concerns: the data is anonymised, transferred and stored

securely in a remote server through AWARE’s enforced data

privacy and security protocols (e.g., encryption certificates,

compression, and pseudonymous identifiers). Participants

read and signed a consent form and we clarified any pending

questions they might have. We demonstrated the

functionality of the application, the different input methods

(alert dialogs and the application), and how to interact with

the alert dialogs.

We instructed them to use the LifeTracker application as

they saw fit: we made clear they were not required to accept

the alert dialogs, neither were they required to log all

requested data (i.e., all parameters of a set of tracked

variables). We also asked them to fill a short survey with

demographic information and answer the following set of

questions:

 Q1) “Do you often read the arriving notifications

immediately?”, on a 4-point scale (Never, Sometimes,

Usually, Always).

 Q2) “What kind of applications (categories) do you use on

your personal smartphone?”, according to a selection from

Play Store categories, including the “Other” category,

which allows the user to be more specific using free text.

 Q3) “Would you describe your smartphone use as active

(frequent short periods of time), passive (only check when

you are prompted by e.g. a notification), or mixed?”

 Q4) “Would you describe yourself as a technology

enthusiast?”, on a 4-point scale (Definitely not, Not really,

Somewhat, Definitely).

After the four-week study period concluded, we invited each

participant to fill an open-ended post-study survey to gather

insights on the experienced interruptive nature and their

experience with the application. We also asked the

participants to describe “What influenced your decision to

answer or reject a dialog?” (Q5).

Our experiment was designed to capture how users interact

with the presented alert dialogs, rather than how they interact

with the application itself. While the application offers

benefits to the user via visualisations and potentially

increased self-perception, as we did not validate the quality

of the logged data in this experiment, we opted not to

investigate our application’s end-user benefits.

 Dialog accepted

(non-interrupting)

Dialog dismissed

(interrupting)

Data

contributed

A. Non-

interrupting, data

contributed

(N = 8,099)

C. Interrupting,

data contributed

(N = 374)

No data

contributed

B. Non-

interrupting, no

data contributed

(N = 7,490)

D. Interrupting,

no data contributed

(N = 3,277)

Table 3. Combinations of class labels based on interaction

choice and existence of data contribution.

RESULTS

Participants interacted with a total of 19287 dialogs (daily

mean = 13.63, SD = 10.11) and made 17,917 data

contributions, of which 12,233 (68.3%) originated from the

alert dialogs. From these 19287 dialogs, 15,434 (80.0%)

were accepted, 3658 (19.0%) were dismissed, and 195

(1.0%) resulted in an application launch. A total number of

8,452 (43.9%) dialogs resulted in data contributions and an

average of 10.25 daily contributions were made via dialogs,

verified by a t-test (t(47) = 62.807, p < .05). We aggregate

395,344 screen events from the participants’ smartphones

into 82,332 (daily mean = 61.25, SD = 51.57) usage sessions

- the period between screen becoming unlocked and either

turning off or returning to locked state - with a mean duration

of 4 minutes and 16 seconds. Based on the difference

between the high dialog acceptance ratio (80.0%, N = 15434)

and the number of data contributions from dialogs (N =

12,233), we observe that not all accepted dialogs resulted in

data contributions.

We therefore created a separate classification scheme for our

interruptibility analysis. We create a matrix of class labels in

which we aggregated both the action (user contributed data

or opted to not contribute) and interaction with the dialog

(dialog accepted or dismissed), as shown in Table 3. Due to

technical malfunctioning, 47 dialogs did not have a

corresponding usage session. As some participants

habitually accepted all dialogs, either mistakenly or to

remove the dialog as fast as possible, this broader

classification offers a more detailed understanding of the

user’s willingness to contribute data through the dialog.

This classification labels dialogs as ‘interrupting’ based on

the user interaction (accept or dismiss), and on the actual

contribution of data. For example, in class B the user selects

the accept interaction (indicating it was non-interrupting) to

hide the dialog but did not contribute any data from the

dialog. Whether this class was considered as interrupting or

not, and in what sense – did the user feel the data contribution

cumbersome or was the dialog generated in an inopportune

time? - does not have a clear generic answer. In class C the

user contributed data, but defined the dialog as interrupting

by hiding the dialog with the “Do not bother me” button.

Class A and D provide the clearest desired dialogue

interaction, dialogs that were accepted and data was

contributed should always be shown (A), or dialogs that were

always dismissed with no contributed should be always

deferred (D). For classes B and C this decision is more

ambiguous. In our analysis, we do not specify which action

should be taken, but merely report whether each class is

accurately predicted. An argument could be made for

combining some of the classes (such as C and D as

‘interrupting’), but we want to keep the different

classification so that separate actions (e.g. defer, hide, show,

and other possibilities) can be mapped separately to each

class.

We begin by benchmarking a collection of machine learning

classifiers and use the whole data set to build a general

model, per classifier, using Weka [18]. The features are

described in Table 2 and the class labels are described in

Table 3. In Table 4 we highlight the best performing

classifier, Random Forest, which we use in our analysis

hereafter. Random Forest uses an internal unbiased

validation measure called out-of-bag (OOB) accuracy [5],

which removes the need for cross-validation. We use this

out-of-bag accuracy as a way to measure and compare

classifier accuracies. Random Forest functions by building N

Figure 2. Measurement of machine learning accuracy using Out-of-bag error rates for different evaluation approaches and different

classes (Table 3).

classifiers with M (max = 15) features each and classifies

based on a voting mechanism from all N classifiers. To

optimise the Random Forest size N (number of trees) and the

number of features M used for each tree, we ran ten passes

of the classifier for M = [5:10] and N = {250, 500, ..., 2000}

and select N = 1500 and M = 5 as the optimal parameters.

Classifier Type Classifier Name Accuracy ROC

Bayesian NaiveBayes 39.82% 0.7

Bayesian BayesNet 72.58% 0.783

Tree J48 74.29% 0.690

Tree RF 77.29% 0.830

Rules DT 68.98% 0.717

Meta Bagging 73.37% 0.770

Meta RandomSubSpace 75.43% 0.811

Lazy LWL 51.76% 0.771

Functions LibSVM 43.09% 0.510

Functions SMO 61.60% 0.620

Table 4. Benchmarked machine learning classifiers.

As our dialog acceptance ratio was high (80.0%), we first

analysed the distribution of the four classes in our dataset and

observed that overfitting still exists for the A (42.0%) and B

classes (38.9%, 81.9% combined). As Random Forests are

shown to perform poorly for a biased dataset, we mitigate

this by downsampling all overfitted classes from hereafter

using random downsampling - half of all samples above the

mean (of all four classes) are discarded at random. Due to the

randomisation of discarded samples, we perform multiple

passes of tests when necessary to minimise the bias due to

any non-removed samples being overrepresented in the

training data.

Predicting User Interactions

As our study setting aims to understand individual users, we

do not attempt to simply generalise across our entire dataset.

Instead, we take two separate approaches to classify user

actions to understand how the classifier performs for a

previously unknown user in predicting both whether the user

would be interrupted by the dialog, and whether the user

would be willing to contribute data.

We use two extremities as relative benchmarks. First, we

trained and evaluated a general model with 20% of the data

removed and used as testing data (to represent previously

unknown interaction patterns), and iterated 20 times. Second,

we evaluated a classifier for each user separately, built solely

on their own data, and iterated 5 times per user. In this first

approach, we leverage the leave-one-out method by

extracting and using each user’s own data as test data, and

train the model with the user’s own data excluded. This gives

us insight about each separate user’s fit into a more general

model, without biasing the training data with instances of the

user’s own tracked data. This also offers us an assessment of

how well a general classifier performs for a previously

unknown user.

In our second approach, we experimented if a middle ground

can exist between the two extremities of general and user

models. The general model assumes we can use all existing

data as training data for all (new) users, while the user model

assumes that each (new) user first needs to collect personal

Classifying

method
Description of use

General

model

Classifier built from all available training

data.

User model Classifier built from each user’s personal

data.

Leave-one-

out

Each user is extracted from the dataset, and

used as test data while the remaining dataset

is used as training data.

User

clustering

Similar users are assigned into clusters, and

leave-one-out is applied to each user in each

cluster, with the remaining cluster data as

training data.

Table 5. Different classifying methods applied to our dataset.

training data. We leverage the concept of user types with

identifiable traits and generated user clusters based on our

pre-study questionnaire, combined with device usage

patterns (hours of active smartphone usage). Each cluster

contains users who share similar pre-determined traits - e.g.,

inquired upon application installation (Q1-Q4, p.5) - and

information regarding their device use (e.g., “Please specify

during which period of the day you are most actively using

your smartphone”). We create k = {4,5,6,7,8} different

clusters of users and use the leave-one-out mechanism for

each of the users within these clusters (Table 5).Since we are

using a separate testing set for each of our cases, we report

both the internal out-of-bag accuracy for the training data

(agreement within the users represented by the training data),

as well as the out-of-bag accuracy of the test data (how well

the test data, representing a previously unknown user, fits

into the training data). We first perform the classification for

general and user models. The internal mean out-of-bag

accuracy is 79.0% (SD = 0.86%) for general model, and

80.4% (SD = 7.91) for the user models. The test out-of-bag

accuracy is 72.6% (SD = 0.36%) for general and 79.1% (SD

= 16.06%) for user. This showcases how the classifiers are

in high internal agreement for both types, but personalised

user models react more accurately to the testing data.

Next, we evaluate our first approach, the leave-one-out

method. The out-of-bag accuracy is similar to the general

model (M = 78.7%, SD = 0.27%, 48 trials). This is expected,

as the training data is similar in both cases. However, the test

out-of-bag accuracy is considerably lower (M = 68.1%, SD

= 12.7%). This highlights the problem of fitting previously

unknown users to a general model, and raises the need for a

solution that 1) can be considered accurate, and 2) does not

require the collection of training data before being useful.

Our second approach aims to mitigate these issues by

constructing user profiles. We utilise demographic

information (age, sex), the pre-study survey (Q1-Q4, p.5),

and each user’s device usage patterns (usage frequency

during different hours of day) to form user groups with a total

of 40 dimensions, using the k means clustering algorithm.

The choice of clustering dimensions was purposely selected

outside of machine learning features to reduce the bias of

clustering choices on the actual classifier. According to these

dimensions, from the best performing configuration (k = 7)

we recognise identifiable characteristics of similarly acting

groups, that share very similar traits to groups in [49], e.g.,

users who frequently use their devices during night, or users

who leverage smartphone capabilities in their work. Cluster

3 consists of users (N = 9) with very balanced characteristics,

without any clear, extreme, or distinguishable extremities.

Users in clusters 6 and 7 also share no clear distinguishable

traits, and the clusters consist of less than five users and are

thus discarded from now on. These users with no clear

characteristics contribute 33% of all the users in our study

setting. These characteristics could still be identified

programmatically using black box methodology – i.e., by

creating clusters without clearly distinguishable

characteristics of the clusters. Following user groups can be

identified with distinguishable characteristics:

Cluster 1: Casual Users (10 users): Users in this group

report the most passive device usage style, low tech

enthusiasm, and slowest response rate to notifications. Their

device use is more frequent during evening (8-10pm) than

any other group. Also, this group has the highest (.50 > .25

for all participants) female ratio.

Cluster 2: Social Chatterers (7): The youngest age group

(M = 20.85 < 28.04 for all, SD = .38), and all users are male.

Users report frequent usage of communication apps, but do

not use many other applications. Smartphone usage is

balanced over the duration of the day (9am to 8pm), users

quickly respond to notifications, and are likely to consider

themselves tech enthusiasts.

Cluster 4: Night Owls (7): Most likely to use their

smartphones between 10pm and 8am. This group likely

consists of people with families abroad in different time

zones. Users in this group are likely to use communication

applications and otherwise displays a more mixed usage

style, with low versatility in application usage.

Cluster 5: Work On-the-go (8): These users report an

active usage style of their smartphones, respond to

interruptions quickly, and report using e.g. finance

applications frequently. Users in this group also have a daily

rhythm that does not involve smartphone usage after 10pm.

Demographically, this group is mostly male (.75 > .25 for all

participants) and is older, on average, than the other groups

(M = 35.6, SD = 2.69).

The leave-one-out method was then applied to each cluster

and the results are visualised in Figure 3 along with the test

results of previous methods (general model, user model, and

the leave-one-out). The clustering methods average between

80.6% and 81.9% (SD = 2.8% to 3.9%) for out-of-bag

accuracy and between 62.7% and 65.3% (SD = 13.0% to

16.5%) for test out-of-bag accuracy. The primary contributor

Figure 3. Random Forest accuracy for different machine

learning evaluation approaches, for both the test set and the

training set.

to reduced accuracy is likely the reduced amount of overall

data (most clusters have between 8 and 15 users, which

correlates to roughly 70-85% reduction in training data) for

the classifier when using the clustering approach. The

increased internal validation within the clusters is visible, as

a t-test on cluster configuration k=7 shows significantly (p <

.05, t = 3.20, df = 151.35,) higher mean accuracy (81.9%, SD

= 2.8%) when compared to the user models (80.4%, SD =

7.9%). The mean is higher for all cluster configurations, but

the results are not significant for other k values. Our main

finding is that within all these cluster configurations, the

groups of users selected using external factors performed as

well as or better than the highly personalised user models.

Preventing Unwanted Interruptions

As our class labels indicate both user’s willingness to

contribute data and their preference of interacting with an

alert dialog, we are also able to infer the likelihood of a

classifier preventing an unwanted dialog from being

generated. In addition to the overall accuracies of the

classifiers, the error rates within different classes are also

provided by the Random Forest classifier. The results for the

same groups are visualised in Figure 2. All the approaches

are accurate in predicting both the classes where users

selected the accept interaction (classes A and B) (M = 14.9%,

SD = 9.1% for A; M = 23.0%, SD = 9.6% for B), and manage

to reduce 26.2% (SD = 8.8%, user model excluded) of the

unwanted cases (D class indicating no data was contributed

and the user dismissed the dialog). The user models are

increasingly less likely (M = 62.0%, SD = 14.8%) to

accurately predict the D class, which is likely due to several

users having the A and B classes overrepresented in their

datasets (accepting all or a majority of presented dialogs).

The C class is problematic to predict accurately, but also

vastly underrepresented in the entire dataset (N = 374, 1.9%),

and unlikely to reduce the overall accuracy of any approach.

Similar to the overall accuracy, the user clusters are in higher

agreement for the D class than other approaches (M = 24.5%

< 26.2%, p < .05, t = 8.68, df = 180.33 after removing

outliers) according to a t-test, which can also be considered

the most important class for preventing unwanted

interruptions.

Understanding Context

To further understand how and why our users interact with

the dialogs in specific ways, we use feature extraction to gain

insights on each factor. MDA (Mean Decrease Accuracy)

shows the impact of each individual feature on the accuracy

of the classifier if the feature is removed, and MDI (Mean

Decrease Gini) is used as the impurity function. From the

features of the k=7 cluster’s classifier, we can also identify

characteristics of the individual clusters that differ from the

general model according to both tests (Mean Decrease

Accuracy and Mean Decrease Impurity). We report

alterations from the general model where both tests are in

agreement and the features were ranked in the top half of the

features.

Overall, the classifiers that used user clustering understood

changes in physical activity and proximity in more detail,

and individual clusters put weight on features such as

network type and hour (“Casual Users”, Cluster 1), Wi-Fi

and internet availability (“Night Owls”, Cluster 2), and

session duration (“Work On-the-go”, Cluster 5). Also, while

the general model used the dialog delay as the most

important feature, four out of five clusters found dialog delay

to be less impactful. The same applies for session type (new

or continuing session). The full averaged rankings for the

Cluster (k = 7) and the general model are visualised in Figure

4.

In our post-study survey, we gathered insights from the

participants regarding their experiences with the LifeTracker

application. Q5 was an open-ended question, so we

categorised the main reasons (one or more) for both

accepting or dismissing a dialog. Ten answers were

discarded from the categorisation due to low quality of the

answer or the lack of proper focus. In eighteen (54.5%)

answers the choice of interaction was due to a more

important priority task being performed on the smartphone

(P36: “Most of the occasions when I rejected a popup were

such that another application needed my concentration at

that exact moment.”). One participant reported the physical

activity (P12: “I would reject the dialog if it came during

work or exercise”), four reported on the time of the day, three

on the surrounding physical context, and two due to bad

mood.

The majority of responses only listed reasons for dismissing

a dialog. Three responses listed reasons specifically for

accepting a dialog, two of these reported the brief

interactions with the dialogs as reasons for accepting it (P17:

“If the question was just a button to select one option I mostly

answered them because it was nearly as quick as rejecting a

dialog.”) and one participant (P16) lack of anything better to

do. The responses in the ‘priority task’ category can also be

perceived as extensions of “lack of anything better to do”.

Figure 4. Feature rankings for MDA (Mean Decrease Accuracy) and MDI (Mean Decrease Impurity) for cluster k = 7.

Some reasons correspond to the characteristics of the dialogs

(brief interactions), while some correspond to the features

used in the machine learning classifiers (e.g., hour, physical

activity, and lack of anything better to do are reflected in

session type and duration).

DISCUSSION

We set out to study the interruptive nature of an input method

designed to leverage user’s spare time and reduce the burden

required to make data contributions. These elements are key

when motivating long term usage of quantified-self

applications. Understanding of human interruptibility is

crucial when using potentially disrupting data input methods.

We present results for an interaction method designed to

fulfil specific requirements (Table 1) that are sculpted to

reduce the cognitive load of the input method [27], decrease

interaction time [43, 44, 46], and increase the quality of

logged data [30]. We also attempt to understand both

individual users and generic user types [48, 49] in order to

enable applications to understand user’s preferences without

reliance on general models (often incorrectly assuming that

all users behave similarly) or requiring an extensive training

period to work correctly.

Contributing Data via Alert Dialogs

Overall, the number of dialogs (13.63, SD = 10.11) presented

to our participants during each day of the study likely caused

a burden on their smartphone usage, since the application

only applied a very simple chance filter on the presentation

of dialogs. However, it is necessary to prompt a user of a

quantified-self application numerous times on a daily basis

to ensure sufficient amount of data contributions, in order to

generate meaningful insights. Considering the amount of

general smartphone usage sessions each user participated in

on a daily basis (M = 61.25, SD = 51.57), participants were

not constantly interrupted but still frequently prompted.

Truong et al. [43] report an average of 49.83 daily

contributions (compared to our 10.25) and [44] report a

37.4% task completion rate, but no number for daily

contributions. However, neither approach considered a ‘skip’

option so the users were always required to contribute in

order to unlock their device. Results of the aforementioned

study state that 44% of the study’s participants felt that a skip

option would have been necessary [44]. In [44], three of the

ten participants also report that the forced data input on

phone unlock significantly decreased the frequency of their

phone unlocking. The requirement of repeated contribution

and lack of a bypass method can significantly diminish the

quality of the data [30], and can cause unnecessary burden to

the user. The unlock screen interface also prohibits the user

from using passwords or secret gestures to securely unlock

his or her device - a limitation neither [30] or [44] addresses.

Minimising the amount of daily interruptions while

maximising the amount of data contributions is completed by

deferring interruptive prompts, and minimising the cognitive

load of the input method.

Dialogs and the use of lock screen as an input mechanism

inherently reduce the cognitive load by design, so the

remaining problem is to reduce the burden to the user, and

the number of interruptions. Predicting the interruptive

nature of an input method should be applied to all prompts,

and the two methods (self-report within the unlocking

interface, or prompting the user after unlocking the device)

can be used in tandem, as long as the user is not

overburdened and prompts are presented appropriately.

Previous work has addressed this challenge via either general

models; use of C4.5 machine learning classifier to predict

acceptance of notifications attains up to 77% accuracy [39],

and the InterruptMe library [35] offers up to 70% precision

and recall. [23] uses decision-theoretic (DT) models to create

user models that offer an increase in accuracy over a random

probing mechanism, but at the cost of significantly reduced

opportunities for self-reports. Additional take-away from our

results is that the interrupting nature should not be derived

directly from the interactions - as the ‘non-disrupting’ classes

(A and B) were overrepresented within the interactions.

When available, external measurements - like in our case

looking at the existence of a data contribution from a dialog

- can be more reliable as users can simply select any available

interaction to remove a disrupting prompt [7]. Based on

results in previous work and the accuracy of our benchmark

general model, a more accurate method is clearly needed,

that understands user’s preferences.

Understanding Personal Preferences

To understand in more detail how different machine learning

classifiers perform for previously unknown users, we

leverage the leave-one-out cross validation method. Users

are detached from the dataset one by one, the remaining data

is used as the training set, and the detached user’s data as a

testing set when applicable. To our knowledge, this method

has not been previously used as a method to understand

users’ personal preferences and users’ fit into general

models. As hypothesised, the leave-one-out method proves

less accurate (68.1%) than the general model (72.6%) with

the testing sets, and signifies how a general model is not

always applicable to the individuals within a general

population. This especially applies in situations where

personal usage traits vastly differ, such as for smartphone

usage [10, 46-49]. These personal differences were evident

in our study, even though our participant group was quite

homogenous by nature, in terms of sociological status, level

of education, and age.

We use features (Table 2) that attempt to both understand the

user’s external context (physical activity, time), and

smartphone usage (frequency of usage sessions and

interactions). The appropriateness of the selected features in

differentiating between users is apparent, as the personalised

user models are more accurate (M = 80.4%, SD = 7.9%) than

the general or leave-one-out, even with the reduced available

training data. In addition, the responses from our final

questionnaire following the four-week usage period

correspond to the selected features. Users reported frequently

dismissing the alert dialogs due to their physical activity,

time of day, or type of device usage session - factors that

directly correspond to the features selected for our machine

learning classifiers and that are previously used as significant

features [20, 35, 39]. This allows us to conclude that the

choice of features accurately reflected the user’s interaction

behaviour.

However, both the use of general models and personalised

user models have inherent problems. General models have

poor fit for individual users with specific usage and behavior

traits. Falaki et al. [10] report that smartphone users differ by

at least one or more orders of magnitude in their device usage

patterns. On the other hand, the use of personalised models

requires significant amount of collected training data - which

in turn requires time. We pick up on the recent trend [48, 49]

of identifying user groups and use this concept to create user

clusters based on external user reported features (e.g.,

description of smartphone use, usage patterns throughout the

day). We selected these dimensions for the clusters in order

to showcase that applications can leverage user provided

information to form preset configurations for new users of

which the application or system has no prior information.

The generated clusters had stronger inner agreement than the

classifiers constructed from other training datasets (Figure

3), indicating the validity of this approach. The cluster-based

classifiers were also most accurate in preventing unwanted

interruptions (Figure 2) - a key measurement considering the

interrupting nature of alert dialog as an input mechanism.

Feature ranking offers a glimpse inside the black box

implementation of the Random Forest classifier, and we can

observe how the different identifiable characteristics of

clusters affect the predictions (Figure 4), e.g. the differences

in physical activity patterns (MDI ranking in Figure 4) are

more detailed than in the general model. As for the users

within clusters, the “Work On-the-go” ranked session

duration higher than in the general model - this archetype is

involved in frequent short usage sessions, so interrupting this

type of user during messaging or an important work-related

call is likely unwanted. “Night Owls” ranked Wi-Fi and

internet availability higher, compared to other groups. This

group prioritises their longer device usage sessions - ones

where they are less interrupted - to occasions where they

have proper connectivity. And the “Casual Users” group put

more weight on hour, indicating that as they use their device

sparingly throughout the day, they prefer to be interrupted

when it is most convenient to them (e.g., during the evening

hours). The effect of these fine-grained pieces of information

become apparent through the way the classifiers function and

take different features into consideration for different user

types. These user clusters can also be generalised to an

extent, considering extremely similar user clusters were

generated in [49], consisting of “Night communicators”,

“Screen checkers”, who are quick to respond to incoming

prompts, and cluster of “Evening learners”, similar in

characteristics to our “Casual users”. We do not claim that

our findings are perfectly applicable to the general

population. We did not analyse the characteristics of roughly

third of our users (three clusters) as their usage traits were

difficult to distinguish sufficiently, or the groups were

considered too small. However, if the process of matching

users to user groups is done programmatically, the

automation process could also efficiently match these types

of users to predetermined groups.

Our analysis is, to the best of our knowledge, the first attempt

to leverage this type of user differentiation, based on a

mixture of self-reported and sensor logged smartphone usage

behaviour. The cluster-based approach resulted in the highest

accuracy (Figure 3), and was most likely to reduce unwanted

interruptions (Figure 2), and had the highest prediction

accuracy within the training data set (Figure 3). The

prediction accuracies also show improvements over previous

work [35, 39]. These results are encouraging and we argue

this research can pave the way for intelligent applications

that can be personalised more effortlessly. Most importantly,

these applications no longer require extensive learning

periods or manually applied configurations. By inquiring

about the usage habits of new users, their requirements for

the application, and their preferences, it becomes possible to

match this information with an existing user base.

Applications are thus able to extract pre-generated group

models for each new user.

Limitations and Future Work

Although our application is not designed to merely collect

data, we focus our work on the data collection process, and

do not consider the quality of the logged data or what the

end-user benefits of using our application were.

Additionally, while our participant group was homogenous

in terms of demographics, they showed diversity in how they

use their smartphones, and our main aim was to validate our

proposed approach.

The machine learning models we use were not evaluated in-

the-wild, but our use of leave-one-out method offers us

insight in how accurately the classifier would react to

unforeseen events. Our aim is to replicate our approach in a

longer field study in the future. This would also verify the

impact of our approach in long-term application use.

CONCLUSION

QS applications habitually suffer from abandonment of use

and often the motivational methods aimed to increase the

longitude of use suffer from lack of data. We conducted a

four-week long user study with 48 users and analyse the use

of potentially intrusive on-screen alert dialogs as self-

reporting mechanisms. We identify five distinct user groups,

based on features external to their interactions, and showcase

how the Random Forest classifier can accurately predict user

interruptibility within these groups.

Personal applications should not rely on generalised models,

as differences in smartphone use between users have been

brought up repeatedly in literature, and also in the results we

have presented in this work. Different user types are more

active during different times of day, have different usage

styles in terms of usage session frequency and duration [46,

47], prefer different types of applications [48, 49], and

interact with their devices differently [10]. This leads to the

inclination to model users either individually, or within

specified user type groups. Applications can leverage our

approach to use historical data from their user base as

training data for new users, by matching characteristics of

new users to existing user groups. However, users should not

be overburdened by constantly requiring data contributions,

especially if multiple applications leverage the same method

and compete for user’s attention.

ACKNOWLEDGEMENTS

This work is partially funded by the Academy of Finland

(Grants 276786-AWARE, 286386-CPDSS, 285459-

iSCIENCE, 304925-CARE), the European Commission

(Grant 6AIKA-A71143-AKAI), and Marie Skłodowska-

Curie Actions (645706-GRAGE)

REFERENCES

1. Devdatta Akhawe and Adrienne Porter Felt. Year.

Alice in Warningland: A Large-Scale Field Study of

Browser Security Warning Effectiveness. In 22nd

USENIX Security Symposium, Washington, D.C.,

USENIX Association.

2. RG Barker. 1968. Ecological psychology : concepts

and methods for studying the environment of human

behavior. Stanford University Press, Stanford,

California.

3. Frank Bentley and Konrad Tollmar. 2013. The Power

of Mobile Notifications to Increase Wellbeing Logging

Behavior. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, ACM,

1095-1098. 10.1145/2470654.2466140

4. Frank Bentley, Konrad Tollmar, Peter Stephenson,

Laura Levy, Brian Jones, Scott Robertson, Ed Price,

Richard Catrambone and Jeff Wilson. 2013. Health

Mashups: Presenting Statistical Patterns between

Wellbeing Data and Context in Natural Language to

Promote Behavior Change. ACM Transactions on

Computer-Human Interaction (TOCHI), 20 (5). 30.

10.1145/2503823

5. Leo Breiman. 2015. Random Forests. Machine

Learning October 2001, Volume 45 (1). 5-32.

10.1023/A:1010933404324

6. Barry Brown, Moira McGregor and Donald McMillan.

2014. 100 Days of iPhone Use: Understanding the

Details of Mobile Device Use. In Proceedings of the

16th International Conference on Human-computer

Interaction with Mobile Devices & Services, ACM,

223-232. 10.1145/2628363.2628377

7. Raymond Chen. 2003. The default answer to every

dialog box is “Cancel”, Microsoft.

8. Eun Kyoung Choe, Saeed Abdullah, Mashfiqui Rabbi,

Edison Thomaz, Daniel A Epstein, Felicia Cordeiro,

Matthew Kay, Gregory D Abowd, Tanzeem

Choudhury and James Fogarty. 2017. Semi-

Automated Tracking: A Balanced Approach for Self-

Monitoring Applications. IEEE Pervasive Computing,

16 (1). 74-84.

9. Anind K. Dey. 2001. Understanding and Using

Context. Personal Ubiquitous Comput., 5 (1). 4-7.

10.1007/s007790170019

10. Hossein Falaki, Ratul Mahajan, Srikanth Kandula,

Dimitrios Lymberopoulos, Ramesh Govindan and

Deborah Estrin. 2010. Diversity in Smartphone Usage.

In Proceedings of the 8th International Conference on

Mobile Systems, Applications, and Services, ACM,

179-194. 10.1145/1814433.1814453

11. D. Ferreira, J. Goncalves, V. Kostakos, L. Barkhuus

and A. K. Dey. 2014. Contextual Experience Sampling

of Mobile Application Micro-Usage. In International

Conference on Human-Computer Interaction with

Mobile Devices and Services, 91-100.

10.1145/2628363.2628367

12. D. Ferreira, V. Kostakos and A. K. Dey. 2015.

AWARE: mobile context instrumentation framework.

Frontiers in ICT, 2 (6). 1-9. 10.3389/fict.2015.00006

13. Denzil Ferreira. 2013. Aware: A mobile context

instrumentation middleware to collaboratively

understand human behavior, Department of Computer

Science & Engineering University of Oulu Acta Univ.

Oul. C 458.

14. James Fogarty, Scott E. Hudson, Christopher G.

Atkeson, Daniel Avrahami, Jodi Forlizzi, Sara Kiesler,

Johnny C. Lee and Jie Yang. 2005. Predicting Human

Interruptibility with Sensors. ACM Trans. Comput.-

Hum. Interact., 12 (1). 119-146.

10.1145/1057237.1057243

15. Thomas Fritz, Elaine M. Huang, Gail C. Murphy and

Thomas Zimmermann. 2014. Persuasive Technology

in the Real World: A Study of Long-term Use of

Activity Sensing Devices for Fitness. In Proceedings of

the SIGCHI Conference on Human Factors in

Computing Systems, ACM, 487-496.

10.1145/2556288.2557383

16. D; Turban Gehrke, E. Year. Determinants of

successful Website design: relative importance and

recommendations for effectiveness. In Hawaii

International Conference on Systems Sciences, Hawaii,

USA. 10.1109/HICSS.1999.772943

17. Rúben Gouveia, Evangelos Karapanos and Marc

Hassenzahl. 2015. How Do We Engage with Activity

Trackers?: A Longitudinal Study of Habito. In

Proceedings of the 2015 ACM International Joint

Conference on Pervasive and Ubiquitous Computing,

ACM, 1305-1316. 10.1145/2750858.2804290

18. Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard

Pfahringer, Peter Reutemann and Ian H. Witten. 2009.

The WEKA Data Mining Software: An Update.

SIGKDD Explor. Newsl., 11 (1). 10-18.

10.1145/1656274.1656278

19. Mary Jo Hatch. 1987. Physical Barriers, Task

Characteristics, and Interaction Activity in Research

and Development Firms. Administrative Science

Quarterly, 32 (3). 387-399. 10.2307/2392911

20. Joyce Ho and Stephen S. Intille. Year. Using context-

aware computing to reduce the perceived burden of

interruptions from mobile devices. In Proceedings of

the SIGCHI Conference on Human Factors in

Computing Systems, ACM, 909-918.

10.1145/1054972.1055100

21. Gary Hsieh, Ian Li, Anind Dey, Jodi Forlizzi and Scott

E. Hudson. 2008. Using Visualizations to Increase

Compliance in Experience Sampling. In Proceedings of

the 10th International Conference on Ubiquitous

Computing, ACM, 164-167.

10.1145/1409635.1409657

22. Shamsi T. Iqbal and Brian P. Bailey. 2008. Effects of

Intelligent Notification Management on Users and

Their Tasks. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, ACM, 93-

102. 10.1145/1357054.1357070

23. Ashish Kapoor and Eric Horvitz. Year. Experience

sampling for building predictive user models: a

comparative study. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems,

ACM, 657-666. 10.1145/1357054.1357159

24. Evangelos Karapanos. 2015. Sustaining User

Engagement with Behavior-change Tools. interactions,

22 (4). 48-52. 10.1145/2775388

25. Nicky Kern, Bernt Schiele and Albrecht Schmidt.

2007. Recognizing context for annotating a live life

recording. Personal and Ubiquitous Computing, 11 (4).

251-263. 10.1007/s00779-006-0086-3

26. Reed Larson and Mihaly Csikszentmihalyi. 1983. The

Experience Sampling Method. In Flow and the

Foundations of Positive Psychology, Wiley Jossey-

Bass, 41-56.

27. Luis A. Leiva, Matthias Böhmer, Sven Gehring and

Antonio Krüger. 2012. Back to the app: the costs of

mobile application interruptions. In MobileHCI'12,

291-294. 10.1145/2371574.2371617

28. Aleksandar Matic, Martin Pielot and Nuria Oliver.

Year. Boredom-computer interaction: boredom

proneness and the use of smartphone. In Proceedings

of the 2015 ACM International Joint Conference on

Pervasive and Ubiquitous Computing, ACM, 837-841.

10.1145/2750858.2807530

29. Abhinav Mehrotra, Robert Hendley and Mirco

Musolesi. 2016. PrefMiner: Mining User’s Preferences

for Intelligent Mobile Notification Management. In

ACM International Joint Conference on Pervasive and

Ubiquitous Computing, ?

30. Abhinav Mehrotra, Jo Vermeulen, Veljko Pejovic and

Mirco Musolesi. 2015. Ask, But Don't Interrupt: The

Case for Interruptibility-Aware Mobile Experience

Sampling. In Adjunct Proceedings of the 2015 ACM

International Joint Conference on Pervasive and

Ubiquitous Computing and Proceedings of the 2015

ACM International Symposium on Wearable

Computers, ACM, 723-732. 10.1145/2800835.2804397

31. Motamedi S., M. Hasheminejad and Choe P. Year.

Driving Safety Considered User Interface of a

Smartphone: An Experimental Comparison |

SpringerLink. In International Conference on Cross-

Cultural Design, Springer. 10.1007/978-3-319-20934-

0_15

32. F. F Nah. 2003. A Study on Tolerable Waiting Time:

How Long Are Web Users Willing to Wait? In 9th

Americas Conference on Information Systems, Tampa,

FL, USA. 10.1080/01449290410001669914

33. Mikio Obuchi, Wataru Sasaki, Tadashi Okoshi, Jin

Nakazawa and Hideyuki Tokuda. Year. Investigating

interruptibility at activity breakpoints using smartphone

activity recognition API. In Proceedings of the 2016

ACM International Joint Conference on Pervasive and

Ubiquitous Computing: Adjunct, ACM, 1602-1607.

10.1145/2968219.2968556

34. Tadashi Okoshi. Year. Attelia: Reducing user's

cognitive load due to interruptive notifications on smart

phones. In Pervasive Computing and Communications

(PerCom), 2015 IEEE International Conference on,

IEEE. 10.1109/PERCOM.2015.7146515

35. Veljko Pejovic and Mirco Musolesi. 2014.

InterruptMe: Designing Intelligent Prompting

Mechanisms for Pervasive Applications. In

Proceedings of the 2014 ACM International Joint

Conference on Pervasive and Ubiquitous Computing,

ACM, 897-908. 10.1145/2632048.2632062

36. Martin Pielot. 2014. Large-scale Evaluation of Call-

availability Prediction. In Proceedings of the 2014

ACM International Joint Conference on Pervasive and

Ubiquitous Computing, ACM, 933-937.

10.1145/2632048.2632060

37. Martin Pielot, Rodrigo de Oliveira, Haewoon Kwak

and Nuria Oliver. 2014. Didn't You See My Message?:

Predicting Attentiveness to Mobile Instant Messages.

In Proceedings of the 32Nd Annual ACM Conference

on Human Factors in Computing Systems, ACM,

3319-3328. 10.1145/2556288.2556973

38. Martin Pielot, Tilman Dingler, Jose San Pedro and

Nuria Oliver. 2015. When Attention is Not Scarce -

Detecting Boredom from Mobile Phone Usage. In

Proceedings of the 2015 ACM International Joint

Conference on Pervasive and Ubiquitous Computing,

ACM, 825-836. 10.1145/2750858.2804252

39. Benjamin Poppinga, Wilko Heuten and Susanne Boll.

2014. Sensor-Based Identification of Opportune

Moments for Triggering Notifications. Pervasive

Computing, IEEE, 13 (1). 22-29.

10.1109/MPRV.2014.15

40. Alireza Sahami Shirazi, Niels Henze, Tilman Dingler,

Martin Pielot, Dominik Weber, Albrecht Schmidt,

Alireza Sahami Shirazi, Niels Henze, Tilman Dingler,

Martin Pielot, Dominik Weber and Albrecht Schmidt.

Year. Large-scale assessment of mobile notifications.

In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, ACM, 3055-3064.

10.1145/2556288.2557189

41. Tapio Soikkeli, Juuso Karikoski and Heikki

Hämmäinen. 2011. Diversity and End User Context in

Smartphone Usage Sessions. In International

Conference on Next Generation Mobile Applications,

Services and Technologies, IEEE, 7-12.

10.1109/NGMAST.2011.12

42. Melanie Swan. 2013. The Quantified Self:

Fundamental Disruption in Big Data Science and

Biological Discovery. Big Data, 1 (2). 85-99.

10.1089/big.2012.0002

43. Khai N. Truong, Thariq Shihipar and Daniel J. Wigdor.

2014. Slide to X: unlocking the potential of smartphone

unlocking. In Proceedings of the 32nd annual ACM

conference on Human factors in computing systems,

3635-3644.

44. Rajan Vaish, Keith Wyngarden, Jingshu Chen,

Brandon Cheung, Michael S. Bernstein, Rajan Vaish,

Keith Wyngarden, Jingshu Chen, Brandon Cheung and

Michael S. Bernstein. Year. Twitch crowdsourcing:

crowd contributions in short bursts of time. In

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, ACM, 3645-3654.

10.1145/2556288.2556996

45. N. van Berkel, C. Luo, D. Ferreira, J. Goncalves and V.

Kostakos. 2015. The Curse of Quantified-Self: An

Endless Quest for Answers. In International Joint

Conference on Pervasive and Ubiquitous Computing

Adjunct, 973-978. 10.1145/2800835.2800946

46. Niels van Berkel, Chu Luo, Theodoros

Anagnostopoulos, Denzil Ferreira, Jorge Goncalves,

Simo Hosio and Vassilis Kostakos. 2016. A

Systematic Assessment of Smartphone Usage Gaps. In

Conference on Human Factors in Computing Systems,

4711-4721. 10.1145/2858036.2858348

47. A. Visuri, Z. Sarsenbayeva, N. van Berkel, J.

Goncalves, R. Rawassizadeh, V. Kostakos and D.

Ferreira. 2017. Quantifying Sources and Types of

Smartwatch Usage Sessions. In Conference on Human

Factors in Computing Systems.

10.1145/3025453.3025817

48. Pascal Welke, Ionut Andone, Konrad Blaszkiewicz and

Alexander Markowetz. Year. Differentiating

smartphone users by app usage. In Proceedings of the

2016 ACM International Joint Conference on

Pervasive and Ubiquitous Computing, ACM, 519-523.

10.1145/2971648.2971707

49. Sha Zhao, Julian Ramos, Jianrong Tao, Ziwen Jiang,

Shijian Li, Zhaohui Wu, Gang Pan and Anind K. Dey.

Year. Discovering different kinds of smartphone users

through their application usage behaviors. In

Proceedings of the 2016 ACM International Joint

Conference on Pervasive and Ubiquitous Computing,

ACM, 498-509. 10.1145/2971648.2971696

