
  

Rapid Clock Synchronisation for 
Ubiquitous Sensing Services Involving 
Multiple Smartphones 

 

Abstract 
This paper investigates the precision of rapid clock 
synchronisation for ubiquitous sensing services which 
consist of multiple smartphones. Specifically, we 
consider scenarios where multiple smartphones are 
used to sense physical phenomena, and subsequently 
the sensor data from multiple distributed devices is 
aggregated. We observe that the accumulated clock 
drift for smartphones can be more than 150ms per day 
in the worst case. We show that solutions using the 
public Network Time Protocol (NTP) can be noisy with 
errors up to 1800ms in one request. We describe a 
rapid clock synchronisation technique that reduces drift 
to 10ms on average (measured by linear regression) 
and achieves pair-wise synchronisation between 
smartphones with an average of 27ms (measured by 
accelerometer), following a Gaussian-like distribution. 
Our results provide a lower bound for rapid clock 
synchronisation as a guide when developing ubiquitous 
sensing services using multiple smartphones. 
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Introduction 
The rich sensors of today’s smartphones (e.g. 
accelerometer, magnetometer, GPS) are increasingly 
enabling researchers to adopt smartphones for 
scientific and engineering sensing applications. 
Particularly, several approaches focus on time-critical 
monitoring using multiple smartphones, e.g. 
earthquake monitoring [1] and pothole detection [8].  
However, clock synchronisation has not been 
adequately addressed for smartphone sensing 
applications. Previous work highlights that the 
acquisition of accurate timing is a fundamental and 
non-trivial task for time-critical mobile phone 
applications [5,7]. Without adequate clock 
synchronisation, the drift of phone clocks (i.e. their 
measurement error) can reduce the modelling 
capability, especially when sensing physical events 
using multiple devices simultaneously. For instance, 
while earthquake sensing is possible using smartphone 
accelerometers [1], it is not clear whether data from 
multiple smartphones can be aggregated to accurately 
model the propagation of the earthquake waves or 
building collapses: this requires precise time 
synchronisation among all the smartphones. 
In this paper we investigate the question: What is the 
best clock synchronisation can we expect when sensing 
with a number of end-users’ smartphones and publicly 
available NTP servers? Our work presents a series of 
experiments and makes the following contributions:  

§ First, we quantify the drift on offline smartphones 
over long timescales. In the worst case, it can be 
more than 150ms per day. We then develop a rapid 
method for synchronising phone clocks within the 
range of 10-100ms. Compared to previous work [7], 

our solution requires less synchronisation processing 
time and is technically easier to implement. 

§ Second, we evaluate our method in an experiment. 
We show that with only 10 NTP records the pairwise 
synchronisation error between smartphones achieves 
27ms on average (measured by accelerometer), 
following a Gaussian-like distribution with maximum 
error 411ms. 

Background Work 
Research on mobile phone sensing has become an 
emerging paradigm of mobile computing. Major 
applications include transportation, environmental 
monitoring and healthcare [6]. Furthermore, time-
critical applications of smartphones have been actively 
researched, such as transportation and environmental 
monitoring. Despite this effort, recent studies show that 
current mobile phone applications are plagued with 
time accuracy issues [5] because smartphone clocks 
cannot provide accurate time [7]. 
Accurate timestamps from smartphone clocks are 
required for personal sensing such as inertial 
localization, while they play a crucial role in 
crowdsensed data, such as earthquake monitoring [1]. 
Since cell towers do not provide public time 
synchronisation service, one practical approach to 
synchronise distributed devices is Global Positioning 
System (GPS). However, this has drawbacks: indoor 
and urban environments may degrade the signal; GPS 
receivers have high power consumption; and the use of 
GPS may conflict with location privacy. 
Alternatively, the Precision Time Protocol (PTP) 
specified by IEEE 1588 standard [3] can also be used to 
synchronise clocks within a specific network. With the 
elimination of queuing delays, the time error of PTP is 
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in the sub-microsecond range on local area networks. 
However, PTP is not practical for use with common 
mobile sensing tasks, where different devices may be 
connected via a variety of communication technologies 
(e.g., WiFi, 4G, 3G, GPRS) and across hybrid networks. 
A practical alternative is NTP [10], which is a 
hierarchical architecture across a four-stratum network.  
Stratum 0, also known as reference clocks, is an array 
of devices generating highly precise periodic signals. 
The remaining strata are synchronised to their upper 
strata. Li et al. [7] designed an experiment to compare 
linear fitting and linear programming methods over 
different synchronising instances using NTP. They 
conclude that 6 hours is the best duration of a 
synchronising instance with a maximal error of 100ms. 
Experiments 
We conducted two experiments to quantify clock drift 
and synchronisation on smartphones. To avoid the 
effects from differences of operating system versions 
and manufacturers, both experiments used 3 identical 
Motorola Moto G mobile phones in the same Wi-Fi 
network. For data collection on the smartphones we 
used the AWARE Framework [2] with a custom NTP 
plugin, set to poll the NTP server every 1 minute. 
Experiment 1 measured the drift of the smartphones 
over a period of 9 days. During this time, the devices 
were placed on a flat surface and our software recorded 
both the clock of the phone and its drift in relation to 
the NTP server. The phones were not set to update 
their time automatically, thus each device’s drift 
accumulated during the experiment. The phones 
remained unused, to ensure that memory and CPU 
hogging did not affect our measurements. 

Experiment 2 quantified the error in attempting to 
synchronise independent sensor streams using NTP. For 

this experiment we decided to create a physical event 
that we could be certain was simultaneously detected 
by all phones. To achieve this, we physically coupled 
the 3 devices (Figure 1) and turned them into a 
pendulum. The 3 devices were hung from the ceiling, 
and they were swung in a pendulum fashion. The 3 
devices were configured to record accelerometer data 
with a 20ms frequency, thus we could be certain that 
all phones physically experienced the same events (i.e., 
each swing) simultaneously. This offered us ground 
truth, since we are certain that the phones had to 
agree on the precise timestamp of each swing. 

Results 

Experiment 1  

 
Figure 2: Clock drift error of three mobile phone clocks, 
quantified using NTP records (Experiment 1). 

Figure 2 gives the results from Experiment 1, where the 
drift on each device is quantified using NTP records 
over 9 continuous days. We observe that the skewing 
rate for each device is linear, as has been previously 

 

Figure 1: Photograph from 
Experiment 2. The 3 devices are 
physically coupled and attached 
to the ceiling. 
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reported [7]. In the worst case, we observe a drift of 
approximately 1500ms over the 9-day period. Due to 
the inconsistent network latency, the NTP records for 
each device are often noisy, forming a fuzzy 
distribution around the linear drift. Most records range 
within 100ms of the true drift, while the maximum 
error was up to approximately 1800ms. This suggests 
that a single NTP record is not reliable because its 
timing can vary considerably.  
Because we do not have ground truth on the true drift, 
we follow the recommendations from previous work [7] 
and model true drift as a regression. We use the Theil–
Sen estimator [11] which is robust to outliers and our 
data has substantial outliers (Figure 2). 

 
Figure 3: Average error when using the median of varying 
number of NTP samples to synchronise phone clocks. Samples 
are taken at 1 minute intervals (Experiment 1). 

Against this ground truth model, we investigate 
alternatives to estimate drifts on-the-fly and with less 
NTP records. Specifically, our approach considers a 
window of T moments. At true time t in T, let the 
smartphone clock reading and the NTP record obtained 

by this phone be C(t) and NTP(t). We compute the 
median of C(t) - NTP(t) over a set of T moments. As 
the clock drift is negligible in a short period (several 
minutes or hours), we consider the calculated median 
as the true clock drift. 

 
Figure 4: Maximum error calculation for the results of Figure 3 
(Experiment 1). 

Figure 3 shows the average error of our approach, 
which decreases significantly when the window of NTP 
samples increases from 1 to 5. Eventually, the error 
converges to less than 10ms for windows sized greater 
than 67. These results confirm that a single NTP record 
is rather unreliable, and that substantial precision gains 
can be achieved by using a window of 10 or more NTP 
samples. We also estimate the confidence intervals of t 
errors to be less than 1ms with at least 3 samples. 
Finally, we estimate the worst case by identifying the 
maximum error in our approach (Figure 4). Again, we 
observe that the maximum error declines as the 
window of NTP samples increases: it is less than 100ms 
when using 97 samples, and less than 40ms when 
using over 157 samples. 
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Figure 5: Median and difference of the 151 ground-truth 
events (Experiment 2). 

Experiment 2  

Based on the findings of Experiment 1, we adopt a 
window of 10 subsequent NTP records (each taken at 
1-minute intervals) to synchronise the phone clocks. 
Then, by swinging our coupled smartphones in a 
pendulum fashion we observe 151 swings. Each swing 
is a physical event that acts as ground truth: each 
swing should be reported at the exact same time by 
each device. By inspecting the accelerometer data log 
from each smartphone, we index acceleration maxima 
(“peaks”) as ground-truth. 
Figure 5 shows the 151 peaks, each with the relative 
pair-wise synchronisation difference between the 3 
devices. The distribution of all these pairwise 
synchronisation differences is shown in Figure 6 (in 
yellow). In addition, Figure 6 shows the NTP offset for 
each phone from Experiment 1 (in red, green and 
blue). We observe that for each individual phone the 
offset forms a Gaussian-like distribution around the 

accurate time. The synchronisation difference between 
devices in Experiment 2 again follows a Gaussian-like 
distribution with higher variance, mean of 27ms and 
maximum of 411ms. 

 
Figure 6: Distribution of NTP records for each device 
(Experiment 1) and their synchronisation difference 
(Experiment 2). 

Discussion and Conclusion 
We observe that the accumulated clock drift can be 
more than 150ms per day in the worst case. This result 
is greatly higher than previously reported (80ms) [7]. 
The theoretical error range of NTP synchronisation 
varies from several milliseconds to 100ms [9]. We find 
that the offset of NTP records over 9 days follows a 
Gaussian-like distribution, which confirms previous 
results [12]. Using a window of 10 NTP records with 1-
minute intervals, our method can reach the error of 
less than 12ms on average. Previous work has required 
longer synchronisation processing time (6 hours in [7]) 
and more complex implementation with linear fitting or 
linear programming. Hence, our approach is practical 
for smartphone clock synchronisation scenarios. 
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We show that the synchronisation differences across 
devices appear a Gaussian distribution with an average 
of 27ms and maximum of 411ms. Since the offset of a 
single device appears a Gaussian distribution, the 
pairwise differences should remain stable between 
numerous devices. Mathematically, the difference of 
two independent variables from a Gaussian distribution 
follows another Gaussian distribution with a mean equal 
to the difference of variable means, and with a variance 
equal to the sum of variable variance.  
We note that time synchronisation using GPS has a 
theoretical error up to 40ns [4]. However, even if GPS 
is available, NTP can be an alternative for privacy 
protection and battery conservation. Our results can 
guide researchers and developers in understanding 
what types of mobile phone sensing applications are 
possible for sensing physical phenomena. 
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